ns-3 Tutorial

ns-3 project
feedback: ns-developers@isi.edu
20 July 2008

This is an ns-3 tutorial. Primary documentation for the ns-3 project is available in four
forms:

e ns-3 Doxygen/Manual: Documentation of the public APIs of the simulator

e Tutorial (this document)

e Reference Manual: Reference Manual

e ns-3 wiki
This document is written in GNU Texinfo and is to be maintained in revision control on

the ns-3 code server. Both PDF and HTML versions should be available on the server.
Changes to the document should be discussed on the ns-developers@isi.edu mailing list.

This software is free software; you can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.

This software is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program.
If not, see http://www.gnu.org/licenses/.

http://www.nsnam.org/doxygen/index.html
http://www.nsnam.org/docs/manual.html
http://www.nsnam.org/wiki/index.php
http://www.gnu.org/licenses/

Table of Contents

1

Introduction.................... 1
1.1 For ns-2 USerS . ..ottt e e 1
1.2 Contributing............c 1
1.3 Tutorial Organization............... 2
Resources.............oiiiiiiiiiinn... 3
2.1 The Web . ..o 3
2.2 Mercurial 3
2.3 Wal . 3
2.4 Development Environment 4
2.5 Socket Programming 4
Getting Started. 5
3.1 Downloading ns-3)
3.2 Building ns-3 6
3.3 Testing ns-3. . ..o 7
3.4 Running a Script. ... 8
Conceptual Overview 9
4.1 Key Abstractions. ... 9
411 Node ..o 9
4.1.2 Application 9
4.1.3 Channel. 10
4.1.4 Net Device..... .o 10
4.1.5 Topology Helpers....... i, 10
4.2 A First ns-3 Scripto 11
4.2.1 Boilerplate ... 11
4.2.2 Module Includes.......... ... o 12
4.2.3 N3 NameSPaCe.vvruvieie e 12
4.2.4 Loggingot 13
4.2.5 Main Function............ 13
4.2.6 Topology Helpers....... i i, 14
4.2.6.1 NodeContainer................iiiiiiiiieiiin .. 14
4.2.6.2 PointToPointHelper 14
4.2.6.3 NetDeviceContainer 15
4.2.6.4 InternetStackHelper............................... 16
4.2.6.5 Ipv4AddressHelper............. 16
4.2.7 Applications. ... 16
4.2.7.1 UdpEchoServerHelper 17
4.2.7.2 UdpEchoClientHelper 17
4.2.8 Simulator 18
4.2.9 Building Your Script o 19

4.3 Ns-3Source Codeot 20

5 Tweakingns-3..........c0iiiiiii... 21
5.1 Using the Logging Module 21
5.1.1 Logging OVerview 21
5.1.2 Enabling Logging i, 22
5.1.3 Adding Logging to your Code........................... 25
5.2 Using Command Line Arguments............................ 26
5.2.1 Overriding Default Attributes........................... 26
5.2.2 Hooking Your Own Values.............................. 29
5.3 Using the Tracing System i .. 30
5.3.1 ASCII Tracing.cooun e 31
5.3.1.1 Parsing Ascii Traces..............ooiiiiiiii.... 32

532 PCAP Tracingoooiii i 34
5.3.2.1 Reading output with tcpdump 34
5.3.2.2 Reading output with Wireshark 35
Building Topologies....................... 36
6.1 Building a Bus Network Topology 36

6.2 Building a Wireless Network Topology 43

ii

Chapter 1: Introduction 1

1 Introduction

The ns-3 simulator is a discrete-event network simulator targeted primarily for research
and educational use. The ns-3 project, started in 2006, is an open-source project developing
ns-3.

Primary documentation for the ns-3 project is available in four forms:
e ns-3 Doxygen/Manual: Documentation of the public APIs of the simulator
e Tutorial (this document)
e Reference Manual: Reference Manual

e ns-3 wiki

The purpose of this tutorial is to introduce new ns-3 users to the system in a structured
way. It is sometimes difficult for new users to glean essential information from detailed
manuals and to convert this information into working simulations. In this tutorial, we will
build several example simulations, introducing and explaining key concepts and features as
we go.

As the tutorial unfolds, we will introduce the full ns-3 documentation and provide point-
ers to source code for those interested in delving deeper into the workings of the system.

A few key points are worth noting at the onset:

e Ns-3 is not an extension of ns-2; it is a new simulator. The two simulators are both
written in C++ but ns-3 is a new simulator that does not support the ns-2 APIs. Some
models from ns-2 have already been ported from ns-2 to ns-3. The project will continue
to maintain ns-2 while ns-3 is being built, and will study transition and integration
mechanisms.

e Ns-3 is open-source, and the project strives to maintain an open environment for
researchers to contribute and share their software.

1.1 For ns-2 Users

For those familiar with ns-2, the most visible outward change when moving to ns-3 is the
choice of scripting language. Ns-2 is typically scripted in Tcl and results of simulations can
be visualized using the Network Animator nam. In ns-3 there is currently no visualization
module, and Python bindings have been developed (Tcl bindings have been prototyped
using SWIG, but are not currently supported). In this tutorial, we will concentrate on
scripting directly in C++ and interpreting results via trace files.

But there are similarities as well (both, for example, are based on C++ objects, and
some code from ns-2 has already been ported to ns-3). We will try to highlight differences
between ns-2 and ns-3 as we proceed in this tutorial.

1.2 Contributing

Ns-3 is a research and educational simulator, by and for the research community. It will rely
on the ongoing contributions of the community to develop new models, debug or maintain
existing ones, and share results. There are a few policies that we hope will encourage people
to contribute to ns-3 like they have for ns-2:

e Open source licensing based on GNU GPLv2 compatibility;

http://www.nsnam.org
http://www.nsnam.org/doxygen/index.html
http://www.nsnam.org/docs/manual.html
http://www.nsnam.org/wiki/index.php
http://www.isi.edu/nsnam/ns
http://www.swig.org

Chapter 1: Introduction 2

o wiki;

e Contributed Code page, similar to ns-2’s popular Contributed Code page;

e src/contrib directory (we will host your contributed code);

e Open bug tracker;

e Ns-3 developers will gladly help potential contributors to get started with the simulator
(please contact one of us).

If you are an ns-3 user, please consider providing your feedback, bug fixes, or code to
the project.

1.3 Tutorial Organization

The tutorial assumes that new users might initially follow a path such as the following:
e Try to download and build a copy;
e Try to run a few sample programs;
e Look at simulation output, and try to adjust it.

As a result, we have tried to organize the tutorial along the above broad sequences of
events.

http://www.nsnam.org/wiki/index.php
http://www.nsnam.org/wiki/index.php/Contributed_Code
http://nsnam.isi.edu/nsnam/index.php/Contributed_Code
http://www.nsnam.org/bugzilla
http://www.nsnam.org/people.html

Chapter 2: Resources 3

2 Resources

2.1 The Web

There are several important resources of which any ns-3 user must be aware. The main
web site is located at http://www.nsnam.org and provides access to basic information
about the ns-3 system. Detailed documentation is available through the main web site
at http://www.nsnam.org/documents.html. You can also find documents relating to the
system architecture from this page.

There is a Wiki that complements the main ns-3 web site which you will find at
http://www.nsnam.org/wiki/. You will find user and developer FAQs there, as well as
troubleshooting guides, third-party contributed code, papers, etc.

The source code may be found and browsed at http://code.nsnam.org/. There you
will find the current development tree in the repository named ns-3-dev. Past releases and
experimental repositories of the core developers may also be found there.

2.2 Mercurial

Complex software systems need some way to manage the organization and changes to the
underlying code and documentation. There are many ways to perform this feat, and you
may have heard of some of the systems that are currently used to do this. The Concurrent
Version System (CVS) is probably the most well known.

The ns-3 project uses Mercurial as its source code management system. Although
you do not need to know much about Mercurial in order to complete this tutorial,
we recommend becoming familiar with Mercurial and using it to access the source
code. Mercurial has a web site at http://www.selenic.com/mercurial/, from which
you can get binary or source releases of this Software Configuration Management
(SCM) system. Selenic (the developer of Mercurial) also provides a tutorial at
http://www.selenic.com/mercurial/wiki/index.cgi/Tutorial/, and a QuickStart
guide at http://www.selenic.com/mercurial/wiki/index.cgi/QuickStart/.

You can also find vital information about using Mercurial and ns-3 on the main ns-3
web site.

2.3 Waf

Once you have source code downloaded to your local system, you will need to compile that
source to produce usable programs. Just as in the case of source code management, there
are many tools available to perform this function. Probably the most will known of these
tools is make. Along with being the most well known, make is probably the most difficult to
use in a very large and highly configurable system. Because of this, many alternatives have
been developed. Recently these systems have been developed using the Python language.

The build system Waf is used on the ns-3 project. It is one of the new generation of
Python-based build systems. You will not need to understand any Python to build the
existing ns-3 system, and will only have to understand a tiny and intuitively obvious subset
of Python in order to extend the system in most cases.

For those interested in the gory details of Waf, the main web site can be found at
http://freehackers.org/ tnagy/waf.html.

http://www.nsnam.org
http://www.nsnam.org/documents.html
http://www.nsnam.org/wiki/
http://code.nsnam.org/
http://www.selenic.com/mercurial/
http://www.selenic.com/mercurial/wiki/index.cgi/Tutorial/
http://www.selenic.com/mercurial/wiki/index.cgi/QuickStart/
http://freehackers.org/~tnagy/waf.html

Chapter 2: Resources 4

2.4 Development Environment

As mentioned above, scripting in ns-3 is done in C++. A working knowledge of C++ and
object-oriented concepts is assumed in this document. We will take some time to review
some of the more advanced concepts or possibly unfamiliar language features, idioms and
design patterns as they appear. We don’t want this tutorial to devolve into a C++ tu-
torial, though, so we do expect a basic command of the language. There are an almost
unimaginable number of sources of information on C++ available on the web or in print.

If you are new to C++, you may want to find a tutorial- or cookbook-based book or web
site and work through at least the basic features of the language before proceeding.

The ns-3 system uses the GNU “toolchain” for development. A software toolchain is
the set of programming tools available in the given environment. For a quick review of what
is included in the GNU toolchain see, http://en.wikipedia.org/wiki/GNU_toolchain.

Typically an ns-3 author will work in Linux or a Linux-like environment. For those
running under Windows, there do exist environments which simulate the Linux environment
to various degrees. The ns-3 project supports development in the Cygwin and the MinGW
environments for these users. See http://www.cygwin.com/ and http://www.mingw.org/
for details on downloading and using these systems. Cygwin provides many of the popular
Linux system commands. It can, however, sometimes be problematic due to the way it
actually does its emulation, and sometimes interactions with other Windows software can
cause problems.

If you do use Cygwin or MinGW; and use Logitech products, we will save you quite a
bit of heartburn right off the bat and encourage you to take a look at the MinGW FAQ.

Search for “Logitech” and read the FAQ entry, “why does make often crash creating a
sh.exe.stackdump file when I try to compile my source code.” Believe it or not, the Logitech
Process Monitor insinuates itself into every DLL in the system when it is running. It can
cause your Cygwin or MinGW DLLs to die in mysterious ways and often prevents debuggers
from running. Beware of Logitech software.

2.5 Socket Programming

We will assume a basic facility with the Berkeley Sockets API in the examples used in this
tutorial. If you are new to sockets, we recommend reviewing the API and some common
usage cases. For a good overview of programming TCP /TP sockets we recommend Practical
TCP/IP Sockets in C.

There is an associated web site that includes source for the examples in the book, which
you can find at: http://cs.baylor.edu/ donahoo/practical/CSockets/.

If you understand the first four chapters of the book (or for those who do not have access
to a copy of the book, the echo clients and servers shown in the website above) you will
be in good shape to understand the tutorial. There is a similar book on Multicast Sockets,
Multicast Sockets. that covers material you may need to understand if you look at the
multicast examples in the distribution.

http://en.wikipedia.org/wiki/GNU_toolchain
http://www.cygwin.com/
http://www.mingw.org/
http://www.mingw.org/MinGWiki/index.php/FAQ
http://www.elsevier.com/wps/product/cws_home/680765
http://www.elsevier.com/wps/product/cws_home/680765
http://cs.baylor.edu/~donahoo/practical/CSockets/
http://www.elsevier.com/wps/product/cws_home/700736

Chapter 3: Getting Started 5)

3 Getting Started

3.1 Downloading ns-3

From this point forward, we are going to assume that the reader is working in Linux or a
Linux emulation environment (Linux, Cygwin, etc.) and has the GNU toolchain installed
and verified. We are also going to assume that you have Mercurial and Waf installed and
running on the target system as described in the Getting Started section of the ns-3 web
site: http://www.nsnam.org/getting_started.html.

The ns-3 code is available in Mercurial repositories on the server code.nsnam.org. You
can download a tarball, but we recommend working with Mercurial — it will make your
life easier in the long run.

If you go to the following link: http://code.nsnam.org/, you will see a number of
repositories. Many are the private repositories of the ns-3 development team. The repos-
itories of interest to you will be prefixed with “ns-3”. The current development snapshot
(unreleased) of ns-3 may be found at: http://code.nsnam.org/ns-3-dev/. Official re-
leases of ns-3 will be numbered as ns-3.<release> with any requred hotfixes added as
minor release numbers. For example, a second hotfix to a hypothetical release nine of ns-3
would be numbered ns-3.9.2.

The current development snapshot (unreleased) of ns-3 may be found at:
http://code.nsnam.org/ns-3-dev/. The developers attempt to keep this repository in a
consistent, working state but it is a development area with unreleased code present, so you
may want to consider staying with an official release.

Since the release numbers are going to be changing, I will stick with the more constant
ns-3-dev here in the tutorial, but you can replace the string “ns-3-dev” with your choice of
release (e.g., ns-3.1) in the text below. You can find the latest version of the code either by
inspection of the repository list or by going to the “Getting Started” web page and looking
for the latest release identifier.

One practice is to create a directory called repos in one’s home directory under which
one can keep local Mercurial repositories. Hint: we will assume you do this later in the
tutorial. If you adopt that approach, you can get a copy of the development version of ns-3
by typing the following into your Linux shell (assuming you have installed Mercurial):

cd

mkdir repos

cd repos

hg clone http://code.nanam.org/ns-3-dev

As the hg (Mercurial) command executes, you should see something like the following,

destination directory: ns-3-dev

requesting all changes

adding changesets

adding manifests

adding file changes

added 3276 changesets with 12301 changes to 1353 files

594 files updated, O files merged, O files removed, O files unresolved

http://www.nsnam.org/getting_started.html
http://code.nsnam.org/
http://code.nsnam.org/ns-3-dev/
http://code.nsnam.org/ns-3-dev/

Chapter 3: Getting Started 6

After the clone command completes, you should have a directory called ns-3-dev under
your ~/repos directory, the contents of which should look something like the following:

AUTHORS examples/ README samples/ wutils/ waf.batx
build/ LICENSE regression/ scratch/ VERSION wscript
doc/ ns3/ RELEASE_NOTES src/ waf*

You are now ready to build the ns-3 distribution.

3.2 Building ns-3

We use Waf to build the ns-3 project. The first thing you will need to do is to configure
the build. For reasons that will become clear later, we are going to work with debug builds
in the tutorial. To explain to Waf that it should do debug builds you will need to execute
the following command,

./waf -d debug configure

This runs Waf out of the local directory (which is provided as a convenience for you). As
the build system checks for various dependencies you should see output that looks similar
to the following,

~/repos/ns-3-dev >./waf -d debug configure

Checking for program g++ : ok /usr/bin/g++
Checking for compiler version : ok Version 4.1.2
Checking for program cpp : ok /usr/bin/cpp
Checking for program ar : ok /usr/bin/ar
Checking for program ranlib : ok /usr/bin/ranlib

Checking for compiler could create programs : ok
Checking for compiler could create shared libs : ok
Checking for compiler could create static libs : ok

Checking for flags -02 -DNDEBUG : ok

Checking for flags —-g -DDEBUG : ok

Checking for flags -g3 -00 -DDEBUG : ok

Checking for flags -Wall : ok

Checking for g++ : ok

Checking for header stdlib.h : ok

Checking for header stdlib.h : ok

Checking for header signal.h : ok

Checking for high precision time implementation : 128-bit integer
Checking for header stdint.h : ok

Checking for header inttypes.h : ok

Checking for header sys/inttypes.h : not found
Checking for package gtk+-2.0 >= 2.12 : not found
Checking for package goocanvas gthread-2.0 : not found
Checking for program diff : ok /usr/bin/diff

Configuration finished successfully; project is now ready to build.

~/repos/ns-3-dev >

The build system is now configured and you can build the debug versions of the ns-3
programs by simply typing,

./waf

Chapter 3: Getting Started 7

You will see many Waf status messages displayed as the system compiles. The most
important is the last one,

Compilation finished successfully

3.3 Testing ns-3

You can run the unit tests of the ns-3 distribution by running the “check” command,
./waf check

You should see a report from each unit test that executes indicating that the test has
passed.

~/repos/ns-3-dev > ./waf check

Entering directory ¢/home/craigdo/repos/ns-3-dev/build’
Compilation finished successfully

PASS AddressHelper

PASS Wifi

PASS DcfManager

PASS Object

PASS Ptr

PASS Callback
~/repos/ns-3-dev >

This command is typically run by users to quickly verify that an ns-3 distribution has
built correctly.

You can also run our regression test suite to ensure that your distribution and tool chain
have produced binaries that generate output that is identical to reference output files stored
in a central location. To run the regression tests, you provide Waf with the regression flag.

./waf --regression

Waf will verify that the current files in the ns-3 distribution are built and will then
look for trace files in the aforementioned centralized location. If your tool chain includes
Mercurial, the regression tests will be downloaded from a repository at code.nsnam.org. If
you do not have Mercurial installed, the reference traces will be downloaded from a tarball
located in the releases section of www.nsnam.org. The particular name of the reference
trace location is built from the ns-3 version located in the VERSION file, so don’t change
that string yourself unless you know what you are doing.

Once the reference traces are downloaded to your local machine, Waf will run a number
of tests that generate what we call trace files. The content of these trace files are compared
with the reference traces just downloaded. If they are identical, the regression tests report
a PASS status. If the regression tests pass, you should see something like,

~/repos/ns-3-dev > ./waf --regression

Entering directory ¢/home/craigdo/repos/ns-3-dev/build’
Compilation finished successfully

========== Running Regression Tests ==========
Synchronizing reference traces using Mercurial.

Chapter 3: Getting Started 8

http://code.nsnam.org/ns-3-dev-ref-traces

Done.

PASS test-csma-broadcast

PASS test-csma-multicast

PASS test-csma-one-subnet

PASS test-csma-packet-socket

PASS test-simple-error-model

PASS test-simple-global-routing

PASS test-simple-point-to-point-olsr

PASS test-tcp-large-transfer

PASS test-udp-echo

~/repos/ns-3-dev >

If a regression tests fails you will see a FAIL indication along with a pointer to the
offending trace file and its associated reference trace file along with a suggestion on diff
parameters and options in order to see what has gone awry.

3.4 Running a Script

We typically run scripts under the control of Waf. This allows the build system to ensure
that the shared library paths are set correctly and that the libraries are available at run
time. To run a program, simply use the —-run option in Waf. Let’s run the ns-3 equivalent
of the ubiquitous hello world program by typing the following:

./waf —--run hello-simulator

Waf first checks to make sure that the program is built correctly and executes a build if
required. Waf then then executes the program, which produces the following output.

Hello Simulator
Congratulations. You are now an ns-3 user.

If you want to run programs under another tool such as gdb or valgrind, see this wiki
entry.

http://www.nsnam.org/wiki/index.php/User_FAQ#How_to_run_NS-3_programs_under_another_tool
http://www.nsnam.org/wiki/index.php/User_FAQ#How_to_run_NS-3_programs_under_another_tool

Chapter 4: Conceptual Overview 9

4 Conceptual Overview

The first thing we need to do before actually starting to look at or write ns-3 code is
to explain a few core concepts and abstractions in the system. Much of this may appear
transparently obvious to some, but we recommend taking the time to read through this
section just to ensure you are starting on a firm foundation.

4.1 Key Abstractions

In this section, we’ll review some terms that are commonly used in networking, but have a
specific meaning in ns-3.

4.1.1 Node

In Internet jargon, a computing device that connects to a network is called a host or
sometimes an end system. Because ns-3 is a network simulator, not specifically an Internet
simulator, we intentionally do not use the term host since it is closely associated with the
Internet and its protocols. Instead, we use a more generic term also used by other simulators
that originates in Graph Theory — the node.

In ns-3 the basic computing device abstraction is called the node. This abstraction is
represented in C++ by the class Node. The Node class provides methods for managing the
representations of computing devices in simulations.

You should think of a Node as a computer to which you will add functionality. One adds
things like applications, protocol stacks and peripheral cards with their associated drivers
to enable the computer to do useful work. We use the same basic model in ns-3.

4.1.2 Application

Typically, computer software is divided into two broad classes. System Software organizes
various computer resources such as memory, processor cycles, disk, network, etc., according
to some computing model. System software usually does not use those resources to complete
tasks that directly benefit a user. A user would typically run an application that acquires
and uses the resources controlled by the system software to accomplish some goal.

Often, the line of separation between system and application software is made at the
privilege level change that happens in operating system traps. In ns-3 there is no real
concept of operating system and especially no concept of privilege levels or system calls.
We do, however, have the idea of an application. Just as software applications run on
computers to perform tasks in the “real world,” ns-3 applications run on ns-3 Nodes to
drive simulations in the simulated world.

In ns-3 the basic abstraction for a user program that generates some activity to
be simulated is the application. This abstraction is represented in C++ by the class
Application. The Application class provides methods for managing the representations
of our version of user-level applications in simulations. Developers are expected to
specialize the Application class in the object-oriented programming sense to create new
applications. In this tutorial, we will use specializations of class Application called
UdpEchoClientApplication and UdpEchoServerApplication. As you might expect,
these applications compose a client/server application set used to generate and echo
simulated network packets

Chapter 4: Conceptual Overview 10

4.1.3 Channel

In the real world, one can connect a computer to a network. Often the media over which
data flows in these netowrks are called channels. When you connect your Ethernet cable
to the plug in the wall, you are connecting your computer to an Ethernet communication
channel. In the simulated world of ns-3, one connects a Node to an object representing
a communication channel. Here the basic communication subnetwork abstraction is called
the channel and is represented in C++ by the class Channel.

The Channel class provides methods for managing communication subnetwork objects
and connecting nodes to them. Channels may also be specialized by developers in the object
oriented programming sense. A Channel specialization may model something as simple as
a wire. The specialized Channel can also model things as complicated as a large Ethernet
switch, or three-dimensional space full of obstructions in the case of wireless networks.

We will use specialized versions of the Channel called CsmaChannel,
PointToPointChannel and WifiChannel in this tutorial. The CsmaChannel, for
example, models a version of a communication subnetwork that implements a carrier sense
multiple access communication medium. This gives us Ethernet-like functionality.

4.1.4 Net Device

It used to be the case that if you wanted to connect a computers to a network, you had
to buy a specific kind of network cable and a hardware device called (in PC terminology)
a peripheral card that needed to be installed in your computer. If the peripheral card
implemented some networking function, theys were called Network Interface Cards, or NICs.
Today most computers come with the network interface hardware built in and users don’t
see these building blocks.

A NIC will not work without a software driver to control the hardware. In Unix (or
Linux), a piece of peripheral hardware is classified as a device. Devices are controlled
using device drivers, and network devices (NICs) are controlled using network device drivers
collectively known as net devices. In Unix and Linux you refer to these net devices by names
such as eth0.

In ns-3 the net device abstraction covers both the software driver and the simulated
hardware. A net device is “installed” in a Node in order to enable the Node to communicate
with other Nodes in the simulation via Channels. Just as in a real computer, a Node may
be connected to more than one Channel via multiple NetDevices.

The net device abstraction is represented in C++ by the class NetDevice. The
NetDevice class provides methods for managing connections to Node and Channel
objects; and may be specialized by developers in the object-oriented programming sense.
We will use the several specialized versions of the NetDevice called CsmaNetDevice,
PointToPointNetDevice, and WifiNetDevice in this tutorial. Just as an Ethernet
NIC is designed to work with an Ethernet network, the CsmaNetDevice is designed to
work with a CsmaChannel; the PointToPointNetDevice is designed to work with a
PointToPointChannel and a WifiNetNevice is designed to work with a WifiChannel.

Chapter 4: Conceptual Overview 11

4.1.5 Topology Helpers

In a real network, you will find host computers with added (or built-in) NICs. In ns-3 we
would say that you will find Nodes with attached NetDevices. In a large simulated network
you will need to arrange many connections between Nodes, NetDevices and Channels.

Since connecting NetDevices to Nodes, NetDevices to Channels, assigning IP addresses,
etc., are such common tasks in ns-3, we provide what we call topology helpers to make
this as easy as possible. For example, it may take many distinct ns-3 core operations to
create a NetDevice, add a MAC address, install that net device on a Node, configure the
node’s protocol stack, and then connect the NetDevice to a Channel. Even more operations
would be required to connect multiple devices onto multipoint channels and then to connect
individual networks together into internetworks. We provide topology helper objects that
combine those many distinct operations into an easy to use model for your convenience.

4.2 A First ns-3 Script

If you downloaded the system as was suggested above, you will have a release of ns-3 in a
directory called repos under your home directory. Change into that release directory, and
you should find a directory structure something like the following:

AUTHORS examples/ README samples/ utils/ waf.batx*
build/ LICENSE regression/ scratch/ VERSION wscript
doc/ ns3/ RELEASE_NOTES src/ waf*

Change into the examples directory. You should see a file named first.cc located there.
This is a script that will create a simple point-to-point link between two nodes and echo a
single packet between the nodes. Let’s take a look at that script line by line, so go ahead
and open first.cc in your favorite editor.

4.2.1 Boilerplate

The first line in the file is an emacs mode line. This tells emacs about the formatting
conventions (coding style) we use in our source code.

/* —*- Mode:C++; c-file-style:’’gnu’’; indent-tabs-mode:nil; -*- */

This is always a somewhat controversial subject, so we might as well get it out of the
way immediately. The ns-3 project, like most large projects, has adopted a coding style to
which all contributed code must adhere. If you want to contribute your code to the project,

you will eventually have to conform to the ns-3 coding standard as described in the file
doc/codingstd.txt or shown on the project web page here.

We recommend that you, well, just get used to the look and feel of ns-3 code and adopt
this standard whenever you are working with our code. All of the development team and
contributors have done so with various amounts of grumbling. The emacs mode line above
makes it easier to get the formatting correct if you use the emacs editor.

The ns-3 simulator is licensed using the GNU General Public License. You will see the
appropriate GNU legalese at the head of every file in the ns-3 distribution. Often you will
see a copyright notice for one of the institutions involved in the ns-3 project above the
GPL text and an author listed below.

/*

* This program is free software; you can redistribute it and/or modify

http://www.nsnam.org/codingstyle.html

Chapter 4: Conceptual Overview 12

it under the terms of the GNU General Public License version 2 as
published by the Free Software Foundation;

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program; if not, write to the Free Software

Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
/

4.2.2 Module Includes

The code proper starts with a number of include statements.

* O X X X XK X X X ¥ ¥

*

#include "ns3/core-module.h"
#include "ns3/simulator-module.h"
#include "ns3/node-module.h"
#include "ns3/helper-module.h"

To help our high-level script users deal with the large number of include files present in
the system, we group includes according to relatively large modules. We provide a single
include file that will recursively load all of the include files used in each module. Rather
than having to look up exactly what header you need, and possibly have to get a number
of dependencies right, we give you the ability to load a group of files at a large granularity.
This is not the most efficient approach but it certainly makes writing scripts much easier.

Each of the ns-3 include files is placed in a directory called ns3 (under the build direc-
tory) during the build process to help avoid include file name collisions. The ns3/core-
module.h file corresponds to the ns-3 module you will find in the directory src/core in
your downloaded release distribution. If you list this directory you will find a large number
of header files. When you do a build, Waf will place public header files in an ns3 direc-
tory under the appropriate build/debug or build/optimized directory depending on your
configuration. Waf will also automatically generate a module include file to load all of the
public header files.

Since you are, of course, following this tutorial religiously, you will already have done a

./waf -d debug configure

in order to configure the project to perform debug builds. You will also have done a

./waf

to build the project. So now if you look in the directory build/debug/ns-3 you will

find the four module include files shown above. You can take a look at the contents of these
files and find that they do include all of the public include files in their respective modules.

4.2.3 Ns3 Namespace

The next line in the first.cc script is a namespace declaration.

using namespace ns3;

Chapter 4: Conceptual Overview 13

The ns-3 project is implemented in a C++ namespace called ns3. This groups all ns-3-
related declarations in a scope outside the global namespace, which we hope will help with
integration with other code. The C++ using statement introduces the ns-3 namespace
into the current (global) declarative region. This is a fancy way of saying that after this
declaration, you will not have to type ns3: : scope resolution operator before all of the ns-3
code in order to use it. If you are unfamiliar with namespaces, please consult almost any
C++ tutorial and compare the ns3 namespace and usage here with instances of the std
namespace and the using namespace std; statements you will often find in discussions of
cout and streams.

4.2.4 Logging

The next line of the script is the following,
NS_LOG_COMPONENT_DEFINE ("FirstScriptExample");

We will use this statement as a convenient place to talk about our Doxygen documen-
tation system. If you look at the project web site, ns-3 project, you will find a link to
“APIs (Doxygen)” in the navigation bar. If you select this link, you will be taken to our
documentation page.

Along the left side, you will find a graphical representation of the structure of the docu-
mentation. A good place to start is the NS-3 Modules “book.” If you expand Modules you
will see a list of ns-3 module documentation. The concept of module here ties directly into
the module include files discussed above. It turns out that the ns-3 logging subsystem is
part of the core module, so go ahead and expand that documentation node. Now, expand
the Debugging book and then select the Logging page.

You should now be looking at the Doxygen documentation for the Logging module. In
the list of #defines at the top of the page you will see the entry for NS_LOG_COMPONENT_
DEFINE. Before jumping in, it would probably be good to look for the “Detailed Description”
of the logging module to get a feel for the overall operation. You can either scroll down or
select the “More...” link under the collaboration diagram to do this.

Once you have a general idea of what is going on, go ahead and take a look at the
specific NS_LOG_COMPONENT_DEFINE documentation. I won’t duplicate the documentation
here, but to summarize, this line declares a logging component called FirstScriptExample
that allows you to enable and disable console message logging by reference to the name.

4.2.5 Main Function

The next lines of the script you will find are,
int
main (int argc, char *argv[])
{

This is just the declaration of the main function of your program (script). Just as in any
C++ program, you need to define a main function that will be the first function run. There
is nothing at all special here. Your ns-3 script is just a C++ program.

The next two lines of the script are used to enable two logging components that are built
into the Echo Client and Echo Server applications:

LogComponentEnable ("UdpEchoClientApplication", LOG_LEVEL_INFO);
LogComponentEnable ("UdpEchoServerApplication", LOG_LEVEL_INFO);

http://www.nsnam.org

Chapter 4: Conceptual Overview 14

If you have read over the Logging component documentation you will have seen that there
are a number of levels of logging verbosity/detail that you can enable on each component.
These two lines of code enable debug logging at the INFO level for echo clients and servers.
This will result in the application printing out messages as packets are sent and received
during the simulation.

Now we will get directly to the business of creating a topology and running a simulation.
We use the topology helper objects to make this job as easy as possible.

4.2.6 Topology Helpers
4.2.6.1 NodeContainer

The next two lines of code in our script will actually create the ns-3 Node objects that will
represent the computers in the simulation.

NodeContainer nodes;
nodes.Create (2);

Let’s find the documentation for the NodeContainer class before we continue. Another
way to get into the documentation for a given class is via the Classes tab in the Doxygen
pages. If you still have the Doxygen handy, just scroll up to the top of the page and
select the Classes tab. You should see a new set of tabs appear, one of which is Class
List. Under that tab you will see a list of all of the ns-3 classes. Scroll down, looking
for ns3::NodeContainer. When you find the class, go ahead and select it to go to the
documentation for the class.

You may recall that one of our key abstractions is the Node. This represents a computer
to which we are going to add things like protocol stacks, applications and peripheral cards.
The NodeContainer topology helper provides a convenient way to create, manage and
access any Node objects that we create in order to run a simulation. The first line above
just declares a NodeContainer which we call nodes. The second line calls the Create
method on the nodes object and asks the container to create two nodes. As described
in the Doxygen, the container calls down into the ns-3 system proper to create two Node
objects and stores pointers to those objects internally.

The nodes as they stand in the script do nothing. The next step in constructing a
topology is to connect our nodes together into a network. The simplest form of network
we support is a single point-to-point link between two nodes. We’ll construct one of those
links here.

4.2.6.2 PointToPointHelper

We are constructing a point to point link, and, in a pattern which will become quite familiar
to you, we use a topology helper object to do the low-level work required to put the link
together. Recall that two of our key abstractions are the NetDevice and the Channel.
In the real world, these terms correspond roughly to peripheral cards and network cables.
Typically these two things are intimately tied together and one cannot expect to interchange,
for example, Ethernet devices and wireless channels. Our Topology Helpers follow this
intimate coupling and therefore you will use a single PointToPointHelper to configure and
connect ns-3 PointToPointNetDevice and PointToPointChannel objects in this script.

The next three lines in the script are,

Chapter 4: Conceptual Overview 15

PointToPointHelper pointToPoint;
pointToPoint.SetDeviceAttribute ("DataRate", StringValue ("5Mbps"));
pointToPoint.SetChannelAttribute ("Delay", StringValue ("2ms"));

The first line
PointToPointHelper pointToPoint;

instantiates a PointToPointHelper object on the stack. From a high-level perspective
the next line,

pointToPoint.SetDeviceAttribute ("DataRate", StringValue ("5Mbps"));

tells the PointToPointHelper object to use the value “5mbps” (five megabits per second)
as the “DataRate” when it creates a PointToPointNetDevice object.

From a more detailed perspective, the string “DataRate” corresponds to what we call
an Attribute of the PointToPointNetDevice. If you look at the Doxygen for class
ns3::PointToPointNetDevice and find the documentation for the GetTypeId method,
you will find a list of Attributes defined for the device. Among these is the “DataRate”
attribute. Most user-visible ns-3 objects have similar lists of attributes. We use this mech-
anism to easily configure simulations without recompiling as you will see in a following
section.

Similar to the “DataRate” on the PointToPointNetDevice you will find a “Delay”
attribute associated with the PointToPointChannel. The final line,

pointToPoint.SetChannelAttribute ("Delay", StringValue ("2ms"));

tells the PointToPointHelper to use the value “2ms” (two milliseconds) as the value of
the transmission delay of every point to point channel it subsequently creates.

4.2.6.3 NetDeviceContainer

At this point in the script, we have a NodeContainer that contains two nodes. We have a
PointToPointHelper that is primed and ready to make PointToPointNetDevices and wire
PointToPointChannel objects between them. Just as we used the NodeContainer topology
helper object to create the Nodes for our simulation, we will ask the PointToPointHelper to
do the work involved in creating, configuring and installing our devices for us. We will need
to have a list of all of the NetDevice objects that are created, so we use a NetDeviceContainer
to hold them just as we used a NodeContainer to hold the nodes we created. The following
two lines of code,

NetDeviceContainer devices;
devices = pointToPoint.Install (nodes);

will finish configuring the devices and channel. The first line declares the device
container mentioned above and the second does the heavy lifting. The Install
method of the PointToPointHelper takes a NodeContainer as a parameter. Internally,
a NetDeviceContainer is created. For each node in the NodeContainer (there
must be exactly two for a point-to-point link) a PointToPointNetDevice is created
and saved in the device container. A PointToPointChannel is created and the
two PointToPointNetDevices are attached. When objects are created by the
PointToPointHelper, the attributes previously set in the helper are used to initialize the
corresponding attributes in the created objects.

Chapter 4: Conceptual Overview 16

After executing the the pointToPoint.Install (nodes) call we will have two nodes,
each with an installed point-to-point net device and a point-to-point channel between them.
Both devices will be configured to transmit data at five megabits per second over the channel
which has a two millisecond transmission delay.

4.2.6.4 InternetStackHelper

We now have nodes and devices configured, but we don’t have any protocol stacks installed
on our nodes. The next two lines of code will take care of that.

InternetStackHelper stack;
stack.Install (nodes);

The InternetStackHelper is a topology helper that is to internet stacks what the
PointToPointHelper is to point-to-point net devices. The Install method takes a
NodeContainer as a parameter. When it is executed, it will install an Internet Stack
(TCP, UDP, IP, etc.) on each of the nodes in the node container.

4.2.6.5 Ipv4AddressHelper

Next we need to associate the devices on our nodes with IP addresses. We provide a topology
helper to manage the allocation of IP addresses. The only user-visible API is to set the
base IP address and network mask to use when performing the actual address allocation
(which is done at a lower level inside the helper).

The next two lines of code in our example script, first.cc,

Ipv4AddressHelper address;
address.SetBase ("10.1.1.0", "255.255.255.0");

declare an address helper object and tell it that it should begin allocating IP addresses
from the network 10.1.1.0 using the mask 255.255.255.0 to define the allocatable bits. By
default the addresses allocated will start at one and increase monotonically, so the first
address allocated from this base will be 10.1.1.1, followed by 10.1.1.2, etc. The low level
ns-3 system actually remembers all of the IP addresses allocated and will generate a fatal
error if you accidentally cause the same address to be generated twice (which is a very hard
to debug error, by the way).

The next line of code,
Ipv4InterfaceContainer interfaces = address.Assign (devices);

performs the actual address assignment. In ns-3 we make the association between an IP
address and a device using an IpvdInterface object. Just as we sometimes need a list of net
devices created by a helper for future reference we sometimes need a list of Ipv4dInterface
objects. The Ipv4InterfaceContainer provides this functionality.

Now we have a point-to-point network built, with stacks installed and IP addresses
assigned. What we need at this point are applications to generate traffic.

4.2.7 Applications

Another one of the core abstractions of the ns-3 system is the Application. In
this script we use two specializations of the core ns-3 class Application called
UdpEchoServerApplication and UdpEchoClientApplication. Just as we have in our
previous explanations, we use helper objects to help configure and manage the underlying

Chapter 4: Conceptual Overview 17

objects. Here, we use UdpEchoServerHelper and UdpEchoClientHelper objects to make
our lives easier.

4.2.7.1 UdpEchoServerHelper

The following lines of code in our example script, first.cc, are used to set up a UDP echo
server application on one of the nodes we have previously created.

UdpEchoServerHelper echoServer (9);

ApplicationContainer serverApps = echoServer.Install (nodes.Get (1));
serverApps.Start (Seconds (1.0));
serverApps.Stop (Seconds (10.0));

The first line of code in the above snippet declares the UdpEchoServerHelper. As usual,
this isn’t the application itself, it is an object used to help us create the actual applications.
One of our conventions is to place required attributes in the helper constructor. In this case,
the helper can’t do anything useful unless it is provided with a port number that the client
also knows about. Rather than just picking one and hoping it all works out, we require
the port number as a parameter to the constructor. The constructor, in turn, simply does
a SetAttribute with the passed value. You can, if desired, set the “Port” attribute to
another value later.

Similar to many other helper objects, the UdpEchoServerHelper object has an Install
method. It is the execution of this method that actually causes the underlying echo server
application to be instantiated and attached to a node. Interestingly, the Install method
takes a NodeContainter as a parameter just as the other Install methods we have seen.
This is actually what is passed to the method even though it doesn’t look so in this case.
There is a C++ implicit conversion at work here.

We now see that echoServer.Install is going to install a UdpEchoServerApplication
on the node found at index number one of the NodeContainer we used to manage our
nodes. Install will return a container that holds pointers to all of the applications (one
in this case since we passed a NodeContainer containing one node) created by the helper.

Applications require a time to “start” generating traffic and may take an optional time
to “stop.” We provide both. These times are set using the ApplicationContainer methods
Start and Stop. These methods take Time parameters. In this case, we use an explicit
C++ conversion sequence to take the C++ double 1.0 and convert it to an ns-3 Time object
using a Seconds cast. The two lines,

serverApps.Start (Seconds (1.0));
serverApps.Stop (Seconds (10.0));

will cause the echo server application to Start (enable itself) at one second into the
simulation and to Stop (disable itself) at ten seconds into the simulation. By virtue of the
fact that we have implicilty declared a simulation event (the application stop event) to be
executed at ten seconds, the simulation will last at least ten seconds.

4.2.7.2 UdpEchoClientHelper

The echo client application is set up in a method substantially similar to that for the
server. There is an underlying UdpEchoClientApplication that is managed by an
UdpEchoClientHelper.

Chapter 4: Conceptual Overview 18

UdpEchoClientHelper echoClient (interfaces.GetAddress (1), 9);
echoClient.SetAttribute ("MaxPackets", UintegerValue (1));
echoClient.SetAttribute ("Interval", TimeValue (Seconds (1.)));
echoClient.SetAttribute ("PacketSize", UintegerValue (1024));

ApplicationContainer clientApps = echoClient.Install (nodes.Get (0));
clientApps.Start (Seconds (2.0));
clientApps.Stop (Seconds (10.0));

For the echo client, however, we need to set five different attributes. The first two
attributes are set during construction of the UdpEchoClientHelper. We pass parameters
that are used (internally to the helper) to set the “RemoteAddress” and “RemotePort”
attributes in accordance with our convention to make required attributes parameters in the
helper constructors.

Recall that we used an Ipv4InterfaceContainer to keep track of the IP addresses
we assigned to our devices. The zeroth interface in the interfaces container is going to
coorespond to the IP address of the zeroth node in the nodes container. The first interface
in the interfaces container cooresponds to the IP address of the first node in the nodes
container. So, in the first line of code (from above), we are creating the helper and telling
it so set the remote address of the client to be the IP address assigned to the node on which
the server resides. We also tell it to arrange to send packets to port nine.

The “MaxPackets” attribute tells the client the maximum number of packets we allow
it to send during the simulation. The “Interval” attribute tells the client how long to
wait between packets, and the “PacketSize” attribute tells the client how large its packet
payloads should be. With this particular combination of attributes, we are telling the client
to send one 1024-byte packet.

Just as in the case of the echo server, we tell the echo client to Start and Stop, but
here we start the client one second after the server is enabled (at two seconds into the
simulation).

4.2.8 Simulator

What we need to do at this point is to actually run the simulation. This is done using the
global function Simulator: :Run.

Simulator::Run ();
When we previously called the methods,

serverApps.Start (Seconds (1.0));
serverApps.Stop (Seconds (10.0));

clientApps.Start (Seconds (2.0));
clientApps.Stop (Seconds (10.0));

we actually scheduled events in the simulator at 1.0 seconds, 2.0 seconds and 10.0 seconds.
When Simulator: :Run is called, the ssytem will begin looking through the list of scheduled
events and executing them. First it will run the event at 1.0 seconds, which will enable
the echo server application. Then it will run the event scheduled for t=2.0 seconds which
will start the echo client application. The start event implementation in the echo client

Chapter 4: Conceptual Overview 19

application will begin the data transfer phase of the simulation by sending a packet to the
server.

The act of sending the packet to the server will trigger a chain of events that will be
automatically scheduled behind the scenes and which will perform the mechanics of the
packet echo according to the various timing parameters that we have set in the script.

Eventually, since we only send one packet, the chain of events triggered by that single
client echo request will taper off and the simulation will go idle. Once this happens, the
remaining events will be the Stop events for the server and the client. When these events
are executed, there are no further events to process and Simulator::Run returns. The
simulation is complete.

All that remains is to clean up. This is done by calling the global function
Simulator::Destroy. As the helper functions (or low level ns-3 code) executed, they
arranged it so that hooks were inserted in the simulator to destroy all of the objects that
were created. You did not have to keep track of any of these objects yourself — all you
had to do was to call Simulator: :Destroy and exit. The ns-3 system took care of the
hard part for you. The remaining lines of our first ns-3 script, first.cc, do just that:

Simulator::Destroy O;
return O;

}
4.2.9 Building Your Script

We have made it trivial to build your simple scripts. All you have to do is to drop your
script into the scratch directory and it will automatically be built if you run Waf. Let’s try
it. Copy examples/first.cc into the scratch directory.

~/repos/ns-3-dev > cp examples/first.cc scratch/
and then build it using waf,

~/repos/ns-3-dev > ./waf
Entering directory ‘/home/craigdo/repos/ns-3-dev/build’
[432/477] cxx: scratch/first.cc -> build/debug/scratch/first_2.o0
[475/477] cxx_link: build/debug/scratch/first_2.0 ...
Compilation finished successfully

~/repos/ns-3-dev >

You can now run the example (note that if you build your program in the scratch
directory you must run it out of the scratch direcory):

~/repos/ns-3-dev > ./waf --run scratch/first

Entering directory ‘/home/craigdo/repos/ns-3-dev/build’
Compilation finished successfully

Sent 1024 bytes to 10.1.1.2
Received 1024 bytes from 10.1.
Received 1024 bytes from 10.1.
~/repos/ns-3-dev >

1.1
1.2

Here you see that the build system checks to make sure that the file has been build and
then runs it. You see the logging component on the echo client indicate that it has sent one
1024 byte packet to the Echo Server on 10.1.1.2. You also see the logging component on the

Chapter 4: Conceptual Overview 20

echo server say that it has received the 1024 bytes from 10.1.1.1. The echo server silently
echoes the packet and you see the echo client log that it has received its packet back from
the server.

4.3 Ns-3 Source Code

Now that you have used some of the ns-3 helpers you may want to have a look at some of
the source code that implements that functionality. The most recent code can be browsed
on our web server at the following link: http://code.nsnam.org/?sort=lastchange. If
you click on the bold repository names on the left of the page, you will see changelogs for
these repositories, and links to the manifest. From the manifest links, one can browse the
source tree.

The top-level directory for one of our repositories will look something like:

drwxr-xr-x [up]

drwxr-xr-x doc manifest
drwxr-xr-x examples manifest
drwxr-xr-x ns3 manifest
drwxr-xr-x regression manifest
drwxr-xr-x samples manifest
drwxr-xr-x scratch manifest
drwxr-xr-x src manifest
drwxr-xr-x tutorial manifest
drwxr-xr-x utils manifest
-rw-r--r-- 135 .hgignore file | revisions | annotate
-rw-r--r-- 891 .hgtags file | revisions | annotate
-rw-r--r-- 441 AUTHORS file | revisions | annotate
-rw-r--r-—- 17987 LICENSE file | revisions | annotate
-rw-r—--r—-— 4948 README file | revisions | annotate
-rw-r—--r-- 4917 RELEASE_NOTES file | revisions | annotate
-rw-r--r-—- 7 VERSION file | revisions | annotate
-rwxr-xr-x 99143 waf file | revisions | annotate
-TWXr-xr-x 28 waf .bat file | revisions | annotate
-rw-r--r—— 30584 wscript file | revisions | annotate

The source code is mainly in the src directory. You can view source code by clicking
on the manifest link to the right of the directory name. If you click on the manifest link
to the right of the src directory you will find a subdirectory. If you click on the manifest
link next to the core subdirectory in under src, you will find a list of files. The first file
you will find is assert.h. If you click on the file link, you will be sent to the source file
for assert.h.

Our example scripts are in the examples directory. The source code for the helpers we
have used in this chapter can be found in the src/helpers directory.

http://code.nsnam.org/?sort=lastchange

Chapter 5: Tweaking ns-3 21

5 Tweaking ns-3

5.1 Using the Logging Module

We have already taken a brief look at the ns-3 logging module while going over the first.cc
script. We will now take a closer look and see what kind of use-cases the logging subsystem
was designed to cover.

5.1.1 Logging Overview

Many large systems support some kind of message logging facility, and ns-3 is not an
exception. In some cases, only error messages are logged to the “operator console” (which
is typically stderr in Unix- based systems). In other systems, warning messages may be
output as well as more detailed informational messages. In some cases, logging facilities are
used to output debug messages which can quickly turn the output into a blur.

Ns-3 takes the view that all of these verbosity levels are useful and we provide a se-
lectable, multi-level approach to message logging. Logging can be disabled completely, en-
abled on a component-by-component basis, or enabled globally; and it provides selectable
verbosity levels. The ns-3 log module provides a straightforward, relatively easy to use way
to get useful information out of your simulation.

You should understand that we do provide a general purpose mechanism — tracing —
to get data out of your models which should be preferred for simulation output (see the
tutorial section Using the Tracing System for more details on our tracing system). Logging
should be preferred for debugging information, warnings, error messages, or any time you
want to easily get a quick message out of your scripts or models.

There are currently seven levels of log messages of increasing verbosity defined in the
system.

e NS_LOG_ERROR — Log error messages;
e NS_LOG_WARN — Log warning messages;
e NS_LOG_DEBUG — Log relatively rare, ad-hoc debugging messages;
e NS_LOG_INFO — Log informational messages about program progress;
e NS_LOG_FUNCTION — Log a message describing each function called;
e NS_LOG_LOGIC — Log messages describing logical flow within a function;
e NS_LOG_ALL — Log everything.
We also provide an unconditional logging level that is always displayed, irrespective of
logging levels or component selection.
e NS_LOG_UNCOND - Log the associated message unconditionally.
Each level can be requested singly or cumulatively; and logging can be set up using
a shell environment variable (NS_LOG) or by logging system function call. As was seen

earlier in the tutorial, the logging system has Doxygen documentation and now would be a
good time to peruse the Logging Module documentation if you have not done so.

Now that you have read the documentation in great detail, let’s use some of that knowl-
edge to get some interesting information out of the first.cc example script you have
already built.

Chapter 5: Tweaking ns-3 22

5.1.2 Enabling Logging

Let’s use the NS_LOG environment variable to turn on some more logging, but to get our
bearings, go ahead and run the script just as you did previously,

~/repos/ns-3-dev > ./waf --run scratch/first

Entering directory ¢/home/craigdo/repos/ns-3-dev/build’
Compilation finished successfully

Sent 1024 bytes to 10.1.1.2

Received 1024 bytes from 10.1.1.1

Received 1024 bytes from 10.1.1.2

~/repos/ns-3-dev >

It turns out that the “Sent” and “Received” messages are actually logging messages
from the UdpEchoClientApplication and UdpEchoServerApplication. We can ask the
client application, for example, to print more information by setting its logging level via
the NS_LOG environment variable.

I am going to assume from here on that are using an sh-like shell that uses
the “VARIABLE=value” syntax. If you are using a csh-like shell, then you will have to
convert my examples to the “setenv VARIABLE value” syntax required by those shells.

Right now, the UDP echo client application is responding to the following line of code
in first.cc,

LogComponentEnable ("UdpEchoClientApplication", LOG_LEVEL_INFO);

This line of code enables the LOG_LEVEL_INFO level of logging. When we pass a logging
level flag, we are actually enabling the given level and all lower levels. In this case, we have
enabled NS_LOG_INFO, NS_LOG_DEBUG, NS_LOG_WARN and NS_LOG_ERROR. We can increase
the logging level and get more information without changing the script and recompiling by
setting the NS_LOG environment variable like this:

~/repos/ns-3-dev > export NS_LOG=UdpEchoClientApplication=level_all
This sets the shell environment variable NS_LOG to the string,
UdpEchoClientApplication=level_all

The left hand side of the assignment is the name of the logging component we want to
set, and the right hand side is the flag we want to use. In this case, we are going to turn
on all of the debugging levels for the application. If you run the script with NS_LOG set
this way, the ns-3 logging system will pick up the change and you should see the following
output:

~/repos/ns-3-dev > ./waf --run scratch/first

Entering directory ‘/home/craigdo/repos/ns-3-dev/build’
Compilation finished successfully
UdpEchoClientApplication:UdpEchoClient ()
UdpEchoClientApplication:StartApplication()
UdpEchoClientApplication:ScheduleTransmit ()
UdpEchoClientApplication:Send()

Sent 1024 bytes to 10.1.1.2

Received 1024 bytes from 10.1.1.1
UdpEchoClientApplication:HandleRead(0x62c640, 0x62cd70)
Received 1024 bytes from 10.1.1.2

Chapter 5: Tweaking ns-3 23

UdpEchoClientApplication:StopApplication()
UdpEchoClientApplication:DoDispose()
UdpEchoClientApplication: “UdpEchoClient ()
~/repos/ns-3-dev >

The additional debug information provided by the application is from the
NS_LOG_FUNCTION level. This shows every time a function in the application is called
during script execution. Note that there are no requirements in the ns-3 system that
models must support any particular logging functionality. The decision regarding how
much information is logged is left to the individual model developer. In the case of the
echo applications, a good deal of log output is available.

You can now see a log of the function calls that were made to the application. If you
look closely you will notice a single colon between the string UdpEchoClientApplication
and the method name where you might have expected a C++ scope operator (::). This is
intentional.

The name is not actually a class name, it is a logging component name. When there
is a one-to-one correspondence between a source file and a class, this will generally be the
class name but you should understand that it is not actually a class name, and there is
a single colon there instead of a double colon to remind you in a relatively subtle way to
conceptually separate the logging component name from the class name.

It turns out that in come cases, it can be hard to determine which method actually
generates a log message. If you look in the text above, you may wonder where the string
“Received 1024 bytes from 10.1.1.2” comes from. You can resolve this by ORing the
prefix_func level into the NS_LOG environment variable. Try doing the following,

export ’NS_LOG=UdpEchoClientApplication=level_all|prefix_func’

Note that the quotes are required since the vertical bar we use to indicate an OR oper-
ation is also a Unix pipe connector.

Now, if you run the script you will see that the logging system makes sure that every
message from the given log component is prefixed with the component name.

“/repos/ns-3-dev > ./waf --run scratch/first

Entering directory ‘/home/craigdo/repos/ns-3-dev/build’

Compilation finished successfully

UdpEchoClientApplication:UdpEchoClient ()

UdpEchoClientApplication:StartApplication()

UdpEchoClientApplication:ScheduleTransmit ()

UdpEchoClientApplication:Send()

UdpEchoClientApplication:Send(): Sent 1024 bytes to 10.1.1.2

Received 1024 bytes from 10.1.1.1

UdpEchoClientApplication:HandleRead (0x62c710, 0x62ce40)

UdpEchoClientApplication:HandleRead(): Received 1024 bytes from 10.1.1.2

UdpEchoClientApplication:StopApplication()

UdpEchoClientApplication:DoDispose()

UdpEchoClientApplication: “UdpEchoClient ()

~/repos/ns-3-dev >

You can now see all of the messages coming from the UDP echo client application are
identified as such. The message “Received 1024 bytes from 10.1.1.2” is now clearly identified

Chapter 5: Tweaking ns-3 24

as coming from the echo client application. The remaining message must be coming from the
UDP echo server application. We can enable that component by entering a colon separated
list of components in the NS_LOG environment variable.

export ’NS_LOG=UdpEchoClientApplication=level_all|prefix_func:
UdpEchoServerApplication=level_all|prefix_func’

Note that you will need to remove the newline after the : in the example text above.

Now, if you run the script you will see all of the log messages from both the echo client
and server applications. You may see that this can be very useful in debugging problems.

“/repos/ns-3-dev > ./waf --run scratch/first

Entering directory ‘/home/craigdo/repos/ns-3-dev/build’
Compilation finished successfully
UdpEchoServerApplication:UdpEchoServer ()
UdpEchoClientApplication:UdpEchoClient ()
UdpEchoServerApplication:StartApplication()
UdpEchoClientApplication:StartApplication()
UdpEchoClientApplication:ScheduleTransmit ()
UdpEchoClientApplication:Send()
UdpEchoClientApplication:Send(): Sent 1024 bytes to 10.1.1.2
UdpEchoServerApplication:HandleRead(): Received 1024 bytes from 10.1.1.1
UdpEchoServerApplication:HandleRead () : Echoing packet
UdpEchoClientApplication:HandleRead(0x62c760, 0x62ce90)
UdpEchoClientApplication:HandleRead(): Received 1024 bytes from 10.1.1.2
UdpEchoServerApplication:StopApplication()
UdpEchoClientApplication:StopApplication()
UdpEchoClientApplication:DoDispose()
UdpEchoServerApplication:DoDispose ()
UdpEchoClientApplication: “UdpEchoClient ()
UdpEchoServerApplication: “UdpEchoServer ()

~/repos/ns-3-dev >

It is also sometimes useful to be able to see the simulation time at which a log message
is generated. You can do this by ORing in the prefix_time bit.

export ’NS_LOG=UdpEchoClientApplication=level_all|prefix_func|prefix_time:
UdpEchoServerApplication=level_all|prefix_func|prefix_time’

If you run the script now, you should see the following output:

~/repos/ns-3-dev > ./waf --run scratch/first

Entering directory ‘/home/craigdo/repos/ns-3-dev/build’

Compilation finished successfully

Ons UdpEchoServerApplication:UdpEchoServer ()

Ons UdpEchoClientApplication:UdpEchoClient ()

1000000000ns UdpEchoServerApplication:StartApplication()

2000000000ns UdpEchoClientApplication:StartApplication()

2000000000ns UdpEchoClientApplication:ScheduleTransmit ()

2000000000ns UdpEchoClientApplication:Send()

2000000000ns UdpEchoClientApplication:Send(): Sent 1024 bytes to 10.1.1.2
2003686400ns UdpEchoServerApplication:HandleRead(): Received 1024 bytes

Chapter 5: Tweaking ns-3 25

from 10.1.1.1
2003686400ns UdpEchoServerApplication:HandleRead(): Echoing packet
2007372800ns UdpEchoClientApplication:HandleRead(0x62c8c0, 0x62d020)
2007372800ns UdpEchoClientApplication:HandleRead(): Received 1024 bytes
from 10.1.1.2
10000000000ns UdpEchoServerApplication:StopApplication()
10000000000ns UdpEchoClientApplication:StopApplication()
UdpEchoClientApplication:DoDispose ()
UdpEchoServerApplication:DoDispose ()
UdpEchoClientApplication: “UdpEchoClient ()
UdpEchoServerApplication: “UdpEchoServer ()
~/repos/ns-3-dev >
You can see that the constructor for the UdpEchoServer was called at a simulation time
of 0 nanoseconds. This is actually happening before the simulation starts. The same for
the UdpEchoClient constructor.

Recall that the first.cc script started the echo server application at one second into
the simulation. You can now see that the StartApplication method of the server is, in
fact, called at one second (or one billion nanoseconds). You can also see that the echo client
application is started at a simulation time of two seconds as we requested in the script.

You can now follow the progress of the simulation from the ScheduleTransmit call in the
client that calls Send to the HandleRead callback in the echo server application. Note that
the elapsed time as the packet is sent across the point-to-point link is 3.6864 milliseconds.
You see the echo server logging a message telling you that it has echoed the packet and then,
after a delay, you see the echo client receive the echoed packet in its HandleRead method.

There is a lot that is happening under the covers in this simulation that you are not
seeing as well. You can very easily follow the entire process by turning on all of the logging
components in the system. Try setting the NS_LOG variable to the following,

export ’NS_LOG=+=level_all|prefix_func|prefix_time’

The asterisk above is the logging component wildcard. This will turn on all of the logging
in all of the components used in the simulation. I won’t reproduce the output here (as of
this writing it produces 772 lines of output for the single packet echo) but you can redirect
this information into a file and look through it with your favorite editor if you like,

“/repos/ns-3-dev > ./waf --run scratch/first >& log.out

I personally use this quite a bit when I am presented with a problem and I have no idea
where things are going wrong. I can follow the progress of the code quite easily without
having to set breakpoints and step through code in a debugger. When I have a general
idea about what is going wrong, I transition into a debugger for fine-grained examination of
the problem. This kind of output can be especially useful when your script does something
completely unexpected. If you are stepping using a debugger you may miss an unexpected
excursion completely. Logging the excursion makes it quickly visible.

5.1.3 Adding Logging to your Code

You can add new logging to your simulations by making calls to the log component via
several macros. Let’s do so in the first.cc script we have in the scratch directory.

Recall that we have defined a logging component in that script:

Chapter 5: Tweaking ns-3 26

NS_LOG_COMPONENT_DEFINE ("FirstScriptExample");

You now know that you can enable all of the logging for this component by setting the
NS_LOG environment variable to the various levels. Let’s go ahead add some logging to the
script. The macro used to add an informational level log message is NS_LOG_INFO. Go
ahead and add one just before we start creating the nodes that tells you that the script is
“Creating Topology.” This is done as in this code snippet,

NS_LOG_INFO ("Creating Topology");

Now build the script using waf and clear the NS_LOG variable to turn off the torrent of
logging we previously enabled:

~/repos/ns-3-dev > export NS_LOG=

Now, if you run the script, you will not see your new message since its associated logging
component (FirstScriptExample) has not been enabled. In order to see your message you
will have to enable the FirstScriptExample logging component with a level greater than
or equal to NS_LOG_INFO. If you just want to see this particular level of logging, you can
enable it by,

~/repos/ns-3-dev > export NS_LOG=FirstScriptExample=info
If you now run the script you will see your new “Creating Topology” log message,

~/repos/ns-3-dev > ./waf --run scratch/first

Entering directory ‘/home/craigdo/repos/ns-3-dev/build’
Compilation finished successfully

Creating Topology

Sent 1024 bytes to 10.1.1.2

Received 1024 bytes from 10.1.1.1

Received 1024 bytes from 10.1.1.2

~/repos/ns-3-dev >

5.2 Using Command Line Arguments

5.2.1 Overriding Default Attributes

Another way you can change how ns-3 scripts behave without editing and building is via
command line arguments. We provide a mechanism to parse command line arguments and
automatically set local and global variables based on those arguments.

The first step in using the command line argument system is to declare the command
line parser. This is done quite simply (in your main program) as in the following code,
int
main (int argc, char *argv[])

{

CommandLine cmd;
cmd.Parse (argc, argv);

Chapter 5: Tweaking ns-3 27

This simple two line snippet is actually very useful by itself. It opens the door to the
ns-3 global variable and attribute systems. Go ahead and add that two lines of code to the
first.cc script at the start of main. Go ahead and build the script and run it, but ask the
script for help in the following way,

“/repos/ns-3-dev > ./waf --run "scratch/first --PrintHelp"

This will ask Waf to run the scratch/first script and pass the command line argument
--PrintHelp to the script. The quotes are required to sort out which program gets which
argument. The command line parser will now see the -—-PrintHelp argument and respond
with,

“/repos/ns-3-dev > ./waf --run ‘‘scratch/first --PrintHelp’’

Entering directory ¢/home/craigdo/repos/ns-3-dev/build’

Compilation finished successfully

--PrintHelp: Print this help message.

--PrintGroups: Print the list of groups.

--PrintTypelds: Print all Typelds.

--PrintGroup=[group] : Print all Typelds of group.

--PrintAttributes=[typeid]: Print all attributes of typeid.

--PrintGlobals: Print the list of globals.

~/repos/ns-3-dev >

4

Let’s focus on the --PrintAttributes option. We have already hinted at the ns-3
attribute system while walking through the first.cc script. We looked at the following
lines of code,

PointToPointHelper pointToPoint;
pointToPoint.SetDeviceAttribute ("DataRate", StringValue ("5Mbps"));
pointToPoint.SetChannelAttribute ("Delay", StringValue ("2ms"));

and mentioned that DataRate was actually an Attribute of the PointToPointNetDevice.}
Let’s use the command line argument parser to take a look at the attributes of the
PointToPointNetDevice. The help listing says that we should provide a TypeId. This
corresponds to the class name of the class to which the attributes belong. In this case it
will be ns3: :PointToPointNetDevice. Let’s go ahead and type in,

./waf —--run "scratch/first --PrintAttributes=ns3::PointToPointNetDevice"

The system will print out all of the attributes of this kind of net device. Among the
attributes you will see listed is,

--ns3: :PointToPointNetDevice: :DataRate=[32768bps] :
The default data rate for point to point links

This is the default value that will be used when a PointToPointNetDevice is created in
the system. We overrode this default with the attribute setting in the PointToPointHelper
above. Let’s use the default values for the point-to-point devices and channels by deleting
the SetDeviceAttribute call and the SetChannelAttribute call from the first.cc we
have in the scratch directory.

Your script should now just declare the PointToPointHelper and not do any set oper-
ations as in the following example,

Chapter 5: Tweaking ns-3 28

NodeContainer nodes;
nodes.Create (2);

PointToPointHelper pointToPoint;

NetDeviceContainer devices;
devices = pointToPoint.Install (nodes);

Go ahead and build the new script with Waf (. /waf) and let’s go back and enable some
logging from the UDP echo server application and turn on the time prefix.

export ’NS_LOG=UdpEchoServerApplication=level_all|prefix_time’
If you run the script, you should now see the following output,

“/repos/ns-3-dev > ./waf --run scratch/first

Entering directory ‘/home/craigdo/repos/ns-3-dev/build’

Compilation finished successfully

Ons UdpEchoServerApplication:UdpEchoServer ()

1000000000ns UdpEchoServerApplication:StartApplication()

Sent 1024 bytes to 10.1.1.2

2257324218ns Received 1024 bytes from 10.1.1.1

2257324218ns Echoing packet

Received 1024 bytes from 10.1.1.2

10000000000ns UdpEchoServerApplication:StopApplication()

UdpEchoServerApplication:DoDispose ()

UdpEchoServerApplication: “UdpEchoServer ()

~/repos/ns-3-dev >

Recall that the last time we looked at the simulation time at which the packet
was received by the echo server, it was at 2.0036864 seconds. Now it is receiving the
packet at about 2.257 seconds. This is because we just dropped the data rate of the
PointToPointNetDevice down to its default of 32768 bits per second from five megabits
per second.

If we were to provide a new DataRate using the command line, we could speed our
simulation up again. We do this in the following way, according to the formula implied by
the help item:

./waf —--run "scratch/first --ns3::PointToPointNetDevice: :DataRate=5Mbps"

This will set the default value of the DataRate attribute back to five megabits per second.
To get the original behavior of the script back, we will have to set the speed-of-light delay
of the channel. We can ask the command line system to print out the Attributes of the
channel just like we did the net device:

./waf --run "scratch/first --PrintAttributes=ns3::PointToPointChannel"
We discover the Delay attribute of the channel is set in the following way:

--ns3: :PointToPointChannel: :Delay=[0Ons] :
Transmission delay through the channel

We can then set both of these default values through the command line system,

Chapter 5: Tweaking ns-3 29

./waf --run "scratch/first
--ns3::PointToPointNetDevice: :DataRate=5Mbps
--ns3: :PointToPointChannel: :Delay=2ms"

in which case we recover the timing we had when we explicitly set the DataRate and
Delay in the script:

Compilation finished successfully

Ons UdpEchoServerApplication:UdpEchoServer ()
1000000000ns UdpEchoServerApplication:StartApplication()
Sent 1024 bytes to 10.1.1.2

2003686400ns Received 1024 bytes from 10.1.1.1
2003686400ns Echoing packet

Received 1024 bytes from 10.1.1.2

10000000000ns UdpEchoServerApplication:StopApplication()
UdpEchoServerApplication:DoDispose ()
UdpEchoServerApplication: “UdpEchoServer ()

Note that the packet is again received by the server at 2.0036864 seconds. We could
actually set any of the attributes used in the script in this way. In particular we could set
the UdpEchoClient attribute MaxPackets to some other value than one.

How would you go about that? Give it a try. Remember you have to comment out the
place we override the default attribute in the script. Then you have to rebuild the script
using the default. You will also have to find the syntax for actually setting the new default
atribute value using the command line help facility. Once you have this figured out you
should be able to control the number of packets echoed from the command line. Since we're
nice folks, we’ll tell you that your command line should end up looking something like,

./waf --run "scratch/first
--ns3: :PointToPointNetDevice: :DataRate=5Mbps
--ns3: :PointToPointChannel: :Delay=2ms
--ns3: :UdpEchoClient: :MaxPackets=2"

5.2.2 Hooking Your Own Values

You can also add your own hooks to the command line system. This is done quite simply
by using the AddValue method to the command line parser.

Let’s use this facility to specify the number of packets to echo in a completely different
way. Let’s add a local variable called nPackets to the main function. We’ll initialize it to
one to match our previous default behavior. To allow the command line parser to change
this value, we need to hook the value into the parser. We do this by adding a call to
AddValue. Go ahead and change the scratch/first.cc script to start with the following
code,

int
main (int argc, char *argv[])
{

uint32_t nPackets = 1;

CommandLine cmd;
cmd . AddValue ("nPackets", "Number of packets to echo", nPackets);

Chapter 5: Tweaking ns-3 30

cmd.Parse (argc, argv);

Scroll down to the point in the script where we set the MaxPackets attribute and change
it so that it is set to the variable nPackets instead of the constant 1 as is shown below.

echoClient.SetAppAttribute ("MaxPackets", UintegerValue (nPackets));

Now if you run the script and provide the —-PrintHelp argument, you should see your
new User Argument listed in the help display.

~/repos/ns-3-dev > ./waf --run "scratch/first --PrintHelp"
Entering directory ‘/home/craigdo/repos/ns-3-dev/build’
Compilation finished successfully
--PrintHelp: Print this help message.
--PrintGroups: Print the list of groups.
--PrintTypelds: Print all Typelds.
--PrintGroup=[group] : Print all Typelds of group.
--PrintAttributes=[typeid]: Print all attributes of typeid.
--PrintGlobals: Print the list of globals.
User Arguments:

--nPackets: Number of packets to echo
~/repos/ns-3-dev >

If you want to specify the number of packets to echo, you can now do so by setting the
--nPackets argument in the command line,

“/repos/ns-3-dev > ./waf --run "scratch/first --nPackets=2"
Entering directory ‘/home/craigdo/repos/ns-3-dev/build’
Compilation finished successfully

Sent 1024 bytes to 10.1.1.2
Received 1024 bytes from 10.1.
Received 1024 bytes from 10.1.
Sent 1024 bytes to 10.1.1.2
Received 1024 bytes from 10.
Received 1024 bytes from 10.
~/repos/ns-3-dev >

= o
N =

= o
=
N =

You have now echoed two packets.

You can see that if you are an ns-3 user, you can use the command line argument
system to control global values and attributes. If you are a model author, you can add new
attributes to your Objects and they will automatically be available for setting by your users
through the command line system. If you are a script author, you can add new variables to
your scripts and hook them into the command line system quite painlessly.

5.3 Using the Tracing System

The whole point of simulation is to generate output for further study, and the ns-3 tracing
system is a primary mechanism for this. Since ns-3 is a C++ program, standard facilities
for generating output from C++ programs could be used:

#include <iostream>

Chapter 5: Tweaking ns-3 31

int main ()

{

std::cout << "The value of x is " << x << std::endl;

}

You could even use the logging module to add a little structure to your solution. There
are many well-known problems generated by such approaches and so we have provided a
generic event tracing subsystem to address the issues we thought were important.

The basic goals of the ns-3 tracing system are:

e For basic tasks, the tracing system should allow the user to generate standard tracing
for popular tracing sources, and to customize which objects generate the tracing;

e Intermediate users must be able to extend the tracing system to modify the output
format generated, or to insert new tracing sources, without modifying the core of the
simulator;

e Advanced users can modify the simulator core to add new tracing sources and sinks.

The ns-3 tracing system is built on the concepts of independent tracing sources and
tracing sinks, and a uniform mechanism for connecting sources to sinks. Trace sources are
entities that can signal events that happen in a simulation and provide access to interesting
underlying data. For example, a trace source could indicate when a packet is received by a
net device and provide access to the packet contents for interested trace sinks.

Trace sources are not useful by themselves, they must be “connected” to other pieces of
code that actually do something useful with the information provided by the sink. Trace
sinks are consumers of the events and data provided by the trace sources. For example, one
could create a trace sink that would (when connected to the trace source of the previous
example) print out interesting parts of the received packet.

The rationale for this explicit division is to allow users to attach new types of sinks to
existing tracing sources, without requiring editing and recompilation of the the core of the
simulator. Thus, in the example above, a user could define a new tracing sink in her script
and attach it to an existing tracing source defined in the simulation core by editing only
the user script.

In this tutorial, we will walk through some pre-defined sources and sinks and show how
they may be customized with little user effort. See the ns-3 manual or how-to sections for
information on advanced tracing configuration including extending the tracing namespace
and creating new tracing sources.

5.3.1 ASCII Tracing

Ns-3 provides helper functionality that wraps the low-level tracing system to help you with
the details involved in configuring some easily understood packet traces. If you enable this
functionality, you will see output in a ASCII files — thus the name. For those familiar with
ns-2 output, this type of trace is analogous to the out.tr generated by many scripts.

Let’s just jump right in and add some ASCII tracing output to our first.cc script.
The first thing you need to do is to add the following code to the script just before the call
to Simulator: :Run ().

Chapter 5: Tweaking ns-3 32

std::ofstream ascii;
ascii.open ("first.tr");
PointToPointHelper: :EnableAsciiAll (ascii);

The first two lines are just vanilla C++ code to open a stream that will be written to
a file named “first.tr.” See your favorite C++ tutorial if you are unfamiliar with this code.
The last line of code in the snippet above tells ns-3 that you want to enable ASCII tracing
on all point-to-point devices in your simulation; and you want the (provided) trace sinks
to write out information about packet movement in ASCII format to the stream provided.
For those familiar with ns-2, the traced events are equivalent to the popular trace points
that log "+", "-" "d" and "r" events.

Since we have used a std::ofstream object, we also need to include the appropriate
header. Add the following line to the script (I typically add it above the ns-3 includes):

#include <fstream>
You can now build the script and run it from the command line:
./waf --run scratch/first

Just as you have seen previously, you may see some messages from Waf and then the
“Compilation finished successfully” with some number of messages from the running pro-
gram.

When it ran, the program will have created a file named first.tr. Because of the way
that Waf works, the file is not created in the local directory, it is created at the top-level
directory of the repository by default. If you want to control where the traces are saved
you can use the --cwd option of Waf to specify this. We have not done so, thus we need
to change into the top level directory of our repo and take a look at the ASCII trace file
first.tr in your favorite editor.

5.3.1.1 Parsing Ascii Traces

There’s a lot of information there in a pretty dense form, but the first thing to notice is
that there are a number of distinct lines in this file. It may be difficult to see this clearly
unless you widen your window considerably.

Each line in the file corresponds to a trace event. In this case we are tracing events
on the transmit queue present in every point-to-point net device in the simulation. The
transmit queue is a queue through which every packet destined for a point-to-point channel
must pass. Note that each line in the trace file begins with a lone character (has a space
after it). This character will have the following meaning:

e +: An enqueue operation occurred on the device queue;
e —: A dequeue operation occurred on the device queue;
e d: A packet was dropped, typically because the queue was full;
e r: A packet was received by the net device.
Let’s take a more detailed view of the first line in the trace file. I'll break it down into
sections (indented for clarity) with a two digit reference number on the left side:

00 +
01 2
02 /NodeList/0/DeviceList/0/$ns3::PointToPointNetDevice/TxQueue/Enqueue

Chapter 5: Tweaking ns-3 33

03 ns3::PppHeader (
04 Point-to-Point Protocol: IP (0x0021))
05 ns3::Ipv4Header (

06 tos 0x0 ttl 64 id O offset O flags [none]
07 length: 1052 10.1.1.1 > 10.1.1.2)

08 ns3: :UdpHeader (

09 length: 1032 49153 > 9)

10 Payload (size=1024)

The first line of this expanded trace event (reference number 00) is the operation. We
have a + character, so this corresponds to an enqueue operation on the transmit queue. The
second line (reference 01) is the simulation time expressed in seconds. You may recall that
we asked the UdpEchoClientApplication to start sending packets at two seconds. Here
we see confirmation that this is, indeed, happening.

The next line of the example trace (reference 02) tell us which trace source originated this
event (expressed in the tracing namespace). You can think of the tracing namespace some-
what like you would a filesystem namespace. The root of the namespace is the NodeList.
This corresponds to a container managed in the ns-3 core code that contains all of the
nodes that are created in a script. Just as a filesystem may have directories under the root,
we may have node numbers in the NodeList. The string /NodeList/0 therefore refers to
the zeroth node in the NodeList which we typically think of as “node 0.” In each node there
is a list of devices that have been installed. This list appears next in the namespace. You
can see that this trace event comes from DevicelList/0 which is the zeroth device installed
in the node.

The next string, $ns3: :PointToPointNetDevice tells you what kind of device is in the
zeroth position of the device list for node zero. Recall that the operation + found at reference
00 meant that an enqueue operation happened on the transmit queue of the device. This
is reflected in the final segments of the “trace path” which are TxQueue/Enqueue.

The remaining lines in the trace should be fairly intuitive. References 03-04 indicate
that the packet is encapulated in the point-to-point protocol. References 05-07 show that
the packet has an IP version four header and has originated from IP address 10.1.1.1 and is
destined for 10.1.1.2. References 08-09 show that this packet has a UDP header and, finally,
reference 10 shows that the payload is the expected 1024 bytes.

The next line in the trace file shows the same packet being dequeued from the transmit
queue on the same node.

The Third line in the trace file shows the packet being received by the net device on the
node with the echo server. I have reproduced that event below.

00 r

01 2.25732

02 /NodeList/1/DevicelList/0/$ns3::PointToPointNetDevice/Rx
03 ns3::PppHeader (

04 Point-to-Point Protocol: IP (0x0021))

05 ns3::IpvdHeader (

06 tos 0x0 ttl 64 id O offset O flags [nonel

07 length: 1052 10.1.1.1 > 10.1.1.2)

08 ns3: :UdpHeader (

Chapter 5: Tweaking ns-3 34

09 length: 1032 49153 > 9)
10 Payload (size=1024)

Notice that the trace operation is now r and the simulation time has increased to 2.25732
seconds. If you have been following the tutorial steps closely this means that you have left
the DataRate of the net devices and the channel Delay set to their default values. This
time should be familiar as you have seen it before in a previous section.

The trace source namespace entry (reference 02) has changed to reflect that this event is
coming from node 1 (/NodeList/1) and the packet reception trace source (/Rx). It should
be quite easy for you to follow the progress of the packet through the topology by looking
at the rest of the traces in the file.

5.3.2 PCAP Tracing

The ns-3 device helpers can also be used to create trace files in the .pcap format. The
acronym pcap (usually written in lower case) stands for packet capture, and is actually an
APT that includes the definition of a .pcap file format. The most popular program that can
read and display this format is Wireshark (formerly called Ethereal). However, there are
many traffic trace analyzers that use this packet format. We encourage users to exploit the
many tools available for analyzing pcap traces. In this tutorial, we concentrate on viewing
pcap traces with tcpdump.

The code used to enable pcap tracing is a one-liner.
PointToPointHelper: :EnablePcapAll ("first");

Go ahead and insert this line of code after the ASCII tracing code we just added to
scratch/first.cc. Notice that we only passed the string “first,” and not “first.pcap” or
something similar. This is because the parameter is a prefix, not a complete file name. The
helper will actually create a trace file for every point-to-point device in the simulation. The
file names will be built using the prefix, the node number, the device number and a “.pcap”
suffix.

In our example script, we will eventually see files named “first-0-0.pcap” and “first.1-
0.pcap” which are the pcap traces for node 0-device 0 and node 1-device 1, respectively.

Once you have added the line of code to enable pcap tracing, you can run the script in
the usual way:

./waf --run scratch/first
If you look at the top level directory of your distribution, you should now see three log

files: first.tr is the ASCII trace file we have previously examined. first-0-0.pcap and
first-1-0.pcap are the new pcap files we just generated.

5.3.2.1 Reading output with tcpdump

The easiest thing to do at this point will be to use tcpdump to look at the pcap files. Output
from dumping both files is shown below:

~/repos/ns-3-dev > /usr/sbin/tcpdump -r first-0-0.pcap -nn -tt
reading from file first-0-0.pcap, link-type PPP (PPP)

2.000000 IP 10.1.1.1.49153 > 10.1.1.2.9: UDP, length 1024
2.514648 IP 10.1.1.2.9 > 10.1.1.1.49153: UDP, length 1024
~/repos/ns-3-dev > /usr/sbin/tcpdump -r first-1-0O.pcap -nn -tt

Chapter 5: Tweaking ns-3 35

reading from file first-1-0.pcap, link-type PPP (PPP)
2.2567324 TP 10.1.1.1.49153 > 10.1.1.2.9: UDP, length 1024
2.257324 1P 10.1.1.2.9 > 10.1.1.1.49153: UDP, length 1024
~/repos/ns-3-dev >

You can see in the dump of “first-0.0.pcap” (the client device) that the echo packet is
sent at 2 seconds into the simulation. If you look at the second dump (of “first-1-0.pcap”)
you can see that packet being received at 2.257324 seconds. You see the packet being echoed
at 2.257324 seconds in the second dump, and finally, you see the packet being received back
at the client in the first dump at 2.514648 seconds.

5.3.2.2 Reading output with Wireshark

If you are unfamilar with Wireshark, there is a web site available from which you can
download programs and documentation: http://www.wireshark.org/.

Wireshark is a graphical user interface which can be used for displaying these trace files.
If you have Wireshark available, you can open each of the trace files and display the contents
as if you had captured the packets using a packet sniffer.

http://www.wireshark.org/

Chapter 6: Building Topologies 36

6 Building Topologies

6.1 Building a Bus Network Topology

In this section we are going to expand our mastery of ns-3 network devices and channels to
cover an example of a bus network. Ns-3 provides a net device and channel we call CSMA
(Carrier Sense Multiple Access).

The ns-3 CSMA device models a simple network in the spirit of Ethernet. A real
Ethernet uses CSMA /CD (Carrier Sense Multiple Access with Collision Detection) scheme
with exponentially increasing backoff to contend for the shared transmission medium. The
ns-3 CSMA device and channel models only a subset of this.

Just as we have seen point-to-point topology helper objects when constructing point-
to-point topologies, we will see equivalent CSMA topology helpers in this section. The
appearance and operation of these helpers should look quite familiar to you.

We provide an example script in our examples directory. This script builds on the
first.cc script and adds a CSMA network to the point-to-point simulation we’ve already
considered. Go ahead and open examples/second.cc in your favorite editor. You will have
already seen enough ns-3 code to understand most of what is going on in this example, but
we will go over the entire script and examine some of the output.

Just as in the first.cc example (and in all ns-3 examples) the file begins with an emacs
mode line and some GPL boilerplate.

One thing that can be surprisingly useful is a small bit of ASCII art that shows a cartoon
of the network topology constructed in the example. You will find a similar “drawing” in
most of our examples.

In this case, you can see that we are going to extend our point-to-point example (the
link between the nodes n0 and nl below) by hanging a bus network off of the right side.
Notice that this is the default network topology since you can actually vary the number of
nodes created on the LAN. If you set nCsma to one, there will be a total of two nodes on
the LAN (CSMA channel) — one required node and one “extra” node. By default there
are thee “extra” nodes as seen below:

// Default Network Topology

//

// 10.1.1.0

// n0 ——=—=————————- nl n2 n3 n4
// point-to-point | | I [
//
// LAN 10.1.2.0

The actual code begins by loading module include files just as was done in the first.cc
example. Then the ns-3 namespace is used and a logging component is defined. This is all
just as it was in first.cc, so there is nothing new yet.

#include "ns3/core-module.h"
#include "ns3/simulator-module.h"
#include "ns3/node-module.h"
#include "ns3/helper-module.h"

Chapter 6: Building Topologies 37

#include "ns3/global-routing-module.h"
using namespace ns3;

NS_LOG_COMPONENT_DEFINE ("SecondScriptExample");

The main program begins by enabling the UdpEchoClientApplication and
UdpEchoServerApplication logging components at INFO level so we can see some output
when we run the example. This should be entirely familiar to you so far.

int

main (int argc, char *argv[])

{

LogComponentEnable ("UdpEchoClientApplication", LOG_LEVEL_INFO);
LogComponentEnable ("UdpEchoServerApplication", LOG_LEVEL_INFO);

Next, you will see some familiar code that will allow you to change the number of devices
on the CSMA network via command line argument. We did something similar when we
allowed the number of packets sent to be changed in the section on command line arguments.

uint32_t nCsma = 3;

CommandLine cmd;

cmd.AddValue ("nCsma", "Number of \"extra\" CSMA nodes/devices", nCsma);

cmd.Parse (argc,argv);

The next step is to create two nodes that we will connect via the point-to-point link.
The NodeContainer is used to do this just as was done in first.cc.

NodeContainer p2pNodes;
p2pNodes.Create (2);

Next, we delare another NodeContainer to hold the nodes that will be part of the bus
(CSMA) network. First, we just instantiate the container object itself.

NodeContainer csmalNodes;
csmaNodes.Add (p2pNodes.Get (1));
csmaNodes.Create (nCsma);

The next line of code Gets the first node (as in having an index of one) from the point-to-
point node container and adds it to the container of nodes that will get CSMA devices. The
node in question is going to end up with a point-to-point device and a CSMA device. We
then create a number of “extra” nodes that compose the remainder of the CSMA network.

The next bit of code should be quite familiar by now. We instantiate a
PointToPointHelper and set the associated default attributes so that we create a five
megabit per second transmitter on devices created using the helper and a two millisecond
delay on channels created by the helper.

PointToPointHelper pointToPoint;
pointToPoint.SetDeviceAttribute ("DataRate", StringValue ("5Mbps"));
pointToPoint.SetChannelAttribute ("Delay", StringValue ("2ms"));

NetDeviceContainer p2pDevices;

p2pDevices = pointToPoint.Install (p2pNodes);

We then instantiate a NetDeviceContainer to keep track of the point-to-point net de-
vices and we Install devices on the point-to-point nodes.

Chapter 6: Building Topologies 38

We mentioned above that you were going to see a helper for CSMA devices and channels,
and the next lines introduce them. The CsmaHelper works just like a PointToPointHelper,
but it creates and connects CSMA devices and channels.

CsmaHelper csma;

NetDeviceContainer csmaDevices;
csmaDevices = csma.Install (csmaNodes);

Just as we created a NetDeviceContainer to hold the devices created by the
PointToPointHelper we create a NetDeviceContainer to hold the devices created by our
CsmaHelper. We call the Install method of the CsmaHelper to install the devices into
the nodes of the csmaNodes NodeContainer.

We now have our nodes, devices and channels created, but we have no protocol stacks
present. Just as in the first.cc script, we will use the InternetStackHelper to install
these stacks.

InternetStackHelper stack;
stack.Install (p2pNodes.Get (0));
stack.Install (csmaNodes);

Recall that we took one of the nodes from the p2pNodes container and added it to the
csmaNodes container. Thus we only need to install the stacks on the remaining p2pNodes
node, and all of the nodes in the csmaNodes container to cover all of the nodes in the
simulation.

Just as in the first.cc example script, we are going to use the Ipv4AddressHelper to
assign IP addresses to our device interfaces. First we use the network 10.1.1.0 to create the
two addresses needed for our two point-to-point devices.

Ipv4AddressHelper address;

address.SetBase ("10.1.1.0", "255.255.255.0");
Ipv4InterfaceContainer p2pInterfaces;
p2pInterfaces = address.Assign (p2pDevices);

Recall that we save the created interfaces in a container to make it easy to pull out
addressing information later for use in setting up the applications.

We now need to assign IP addresses to our CSMA device interfaces. The operation
works just as it did for the point-to-point case, except we now are performing the operation
on a container that has a variable number of CSMA devices — remember we made the
number of CSMA devices changeable by command line argument. The CSMA devices will
be associated with IP addresses from network number 10.1.2.0 in this case, as seen below.

address.SetBase ("10.1.2.0", "255.255.255.0");
Ipvd4InterfaceContainer csmalnterfaces;
csmalnterfaces = address.Assign (csmaDevices);

Now we have a topology built, but we need applications. This section is going to be
fundamentally similar to the applications section of first.cc but we are going to instantiate
the server on one of the nodes that has a CSMA node and the client on the node having
only a point-to-point device.

First, we set up the echo server. We create a UdpEchoServerHelper and provide a
required attribute value to the constructor which is the server port number. Recall that

Chapter 6: Building Topologies 39

this port can be changed later using the SetAttribute method if desired, but we require
it to be provided to the constructor.

UdpEchoServerHelper echoServer (9);

ApplicationContainer serverApps = echoServer.Install (csmaNodes.Get (nCsma));|]
serverApps.Start (Seconds (1.0));
serverApps.Stop (Seconds (10.0));

Recall that the csmaNodes NodeContainer contains one of the nodes created for the
point-to-point network and nCsma “extra” nodes. What we want to get at is the last of
the “extra” nodes. The zeroth entry of the csmaNodes container will the the point-to-point
node. The easy way to think of this, then, is if we create one “extra” CSMA node, then
it will be be at index one of the csmaNodes container. By induction, if we create nCsma
“extra” nodes the last one will be at index nCsma. You see this exhibited in the Get of the
first line of code.

The client application is set up exactly as we did in the first.cc example script. Again,
we provide required attributes to the UdpEchoClientHelper in the constructor (in this case
the remote address and port). We tell the client to send packets to the server we just installed
on the last of the “extra” CSMA nodes. We install the client on the leftmost point-to-point
node seen in the topology illustration.

UdpEchoClientHelper echoClient (csmalnterfaces.GetAddress (nCsma), 9);
echoClient.SetAttribute ("MaxPackets", UintegerValue (1));
echoClient.SetAttribute ("Interval", TimeValue (Seconds (1.)));
echoClient.SetAttribute ("PacketSize", UintegerValue (1024));

ApplicationContainer clientApps = echoClient.Install (p2pNodes.Get (0));
clientApps.Start (Seconds (2.0));
clientApps.Stop (Seconds (10.0));

Since we have actually built an internetwork here, we need some form of internetwork
routing. Ns-3 provides what we call a global route manager to set up the routing tables on
nodes. This route manager has a global function that runs though the nodes created for
the simulation and does the hard work of setting up routing for you.

Basically, what happens is that each node behaves as if it were an OSPF router that
communicates instantly and magically with all other routers behind the scenes. Each node
generates link advertisements and communicates them directly to a global route manager
which uses this global information to construct the routing tables for each node. Setting
up this form of routing is a one-liner:

GlobalRouteManager: :PopulateRoutingTables ();

The remainder of the script should be very familiar to you. We just enable pcap tracing,
run the simulation and exit the script. Notice that enabling pcap tracing using the CSMA
helper is done in the same way as for the pcap tracing with the point-to-point helper.

PointToPointHelper: :EnablePcapAll ("second");
CsmaHelper: :EnablePcapAll ("second");

Simulator::Run ();
Simulator: :Destroy ();

Chapter 6: Building Topologies 40

return O;

}

In order to run this example, you have to copy the second.cc example script into the
scratch directory and use Waf to build just as you did with the first.cc example. If you
are in the top-level directory of the repository you would type,

cp examples/second.cc scratch/
. /waf
./waf --run scratch/second

Since we have set up the UDP echo applications to log just as we did in first.cc, you
will see similar output when you run the script.

~/repos/ns-3-dev > ./waf --run scratch/second

Entering directory ‘/home/craigdo/repos/ns-3-dev/build’
Compilation finished successfully

Sent 1024 bytes to 10.1.2.4

Received 1024 bytes from 10.1.1.1

Received 1024 bytes from 10.1.2.4

~/repos/ns-3-dev >

Recall that the first message, Sent 1024 bytes to 10.1.2.4 is the UDP echo client
sending a packet to the server. In this case, the server is on a different network (10.1.2.0).
The second message, Received 1024 bytes from 10.1.1.1, is from the UDP echo server,
generated when it receives the echo packet. The final message, Received 1024 bytes from
10.1.2.4 is from the echo client, indicating that it has received its echo back from the
server.

If you now go and look in the top level directory, you will find a number of trace files:

“/repos/ns-3-dev > ls *.pcap

second-0-0.pcap second-1-1.pcap second-3-0.pcap

second-1-0.pcap second-2-0.pcap second-4-0.pcap

~/repos/ns-3-dev >

Let’s take a moment to look at the naming of these files. They all have the same form,
<name>-<node>-<device>.pcap. For example, the first file in the listing is second-0-
0.pcap which is the pcap trace from node zero - device zero. There are no other devices on
node zero so this is the only trace from that node.

Now look at second-1-0.pcap and second-1-1.pcap. The former is the pcap trace for
device zero on node one and the latter is the trace file for device one on node one. If you
refer back to the topology illustrration at the start of the section, you will see that node
one is the node that has both a point-to-point device and a CSMA device, so we should
expect two pcap traces for that node.

Now, let’s follow the echo packet through the internetwork. First, do a tcpdump of the
trace file for the leftmost point-to-point node — node zero.

~/repos/ns-3-dev > tcpdump -r second-0-0.pcap -nn -tt

reading from file second-0-0.pcap, link-type PPP (PPP)

2.000000 IP 10.1.1.1.49153 > 10.1.2.4.9: UDP, length 1024

2.007382 IP 10.1.2.4.9 > 10.1.1.1.49153: UDP, length 1024

~/repos/ns-3-dev >

Chapter 6: Building Topologies 41

The first line of the dump indicates that the link type is PPP (point-to-point) which we
expect. You then see the echo packet leaving node zero via the device associated with IP
address 10.1.1.1 headed for IP address 10.1.2.4 (the rightmost CSMA node). This packet
will move over the point-to-point link and be received by the point-to-point net device on
node one. Let’s take a look:

~/repos/ns-3-dev > tcpdump -r second-1-0.pcap -nn -tt
reading from file second-1-0.pcap, link-type PPP (PPP)
2.003686 IP 10.1.1.1.49153 > 10.1.2.4.9: UDP, length 1024
2.003695 IP 10.1.2.4.9 > 10.1.1.1.49153: UDP, length 1024
~/repos/ns-3-dev >

Here we see that the link type is also PPP as we would expect. You see the packet from
IP address 10.1.1.1 headed toward 10.1.2.4 appear on this interface. Now, internally to this
node, the packet will be forwarded to the CSMA interface and we should see it pop out the
other device headed for its ultimate destination. Let’s then look at second-1-1.pcap and see
if its there.

~/repos/ns-3-dev > tcpdump -r second-1-1.pcap -nn -tt

reading from file second-1-1.pcap, link-type EN10OMB (Ethernet)
.003686 arp who-has 10.1.2.4 (ff:ff:ff:ff:ff:ff) tell 10.1.2.1
.003687 arp reply 10.1.2.4 is-at 00:00:00:00:00:06

.003687 IP 10.1.1.1.49153 > 10.1.2.4.9: UDP, length 1024
.003691 arp who-has 10.1.2.1 (ff:ff:ff:ff:ff:ff) tell 10.1.2.4
.003691 arp reply 10.1.2.1 is-at 00:00:00:00:00:03

.003695 IP 10.1.2.4.9 > 10.1.1.1.49153: UDP, length 1024
~/repos/ns-3-dev >

NDNDNNNDDN

As you can see, the link type is now “Ethernet.” Something new has appeared, though.
The bus network needs ARP, the Address Resolution Protocol. The node knows it needs
to send the packet to IP address 10.1.2.4, but it doesn’t know the MAC address of the
corresponding node. It broadcasts on the CSMA network (ff:ff:ff:ff:ff:ff) asking for the
device that has IP address 10.1.2.4. In this case, the rightmost node replies saying it is at
MAC address 00:00:00:00:00:06. This exchange is seen in the following lines,

2.003686 arp who-has 10.1.2.4 (ff:ff:ff:ff:ff:ff) tell 10.1.2.1
2.003687 arp reply 10.1.2.4 is-at 00:00:00:00:00:06

Then node one, device one goes ahead and sends the echo packet to the UDP echo server
at IP address 10.1.2.4. We can now look at the pcap trace for the echo server,

~/repos/ns-3-dev > tcpdump -r second-4-0.pcap -nn -tt

reading from file second-4-0.pcap, link-type EN1OMB (Ethernet)
.003686 arp who-has 10.1.2.4 (ff:ff:ff:ff:ff:ff) tell 10.1.2.1
.003686 arp reply 10.1.2.4 is-at 00:00:00:00:00:06

.003690 IP 10.1.1.1.49153 > 10.1.2.4.9: UDP, length 1024
.003690 arp who-has 10.1.2.1 (ff:ff:ff:ff:ff:ff) tell 10.1.2.4
.003692 arp reply 10.1.2.1 is-at 00:00:00:00:00:03

.003692 IP 10.1.2.4.9 > 10.1.1.1.49153: UDP, length 1024
~/repos/ns-3-dev >

N NDDNDDNNDDN

Chapter 6: Building Topologies 42

Again, you see that the link type is “Ethernet.” The first two entries are the ARP
exchange we just explained. The third packet is the echo packet being delivered to its final
destination.

The echo server turns the packet around and needs to send it back to the echo client on
10.1.1.1 but it knows that this address is on another network that it reaches via IP address
10.1.2.1. This is because we initialized global routing and it has figured all of this out for
us. But, the echo server node doesn’t know the MAC address of the first CSMA node, so
it has to ARP for it just like the first CSMA node had to do. We leave it as an exercise for
you to find the entries corresponding to the packet returning back on its way to the client
(we have already dumped the traces and you can find them in those tcpdumps above.

Let’s take a look at one of the CSMA nodes that wasn’t involved in the packet exchange:

~/repos/ns-3-dev > tcpdump -r second-2-0.pcap -nn -tt

reading from file second-2-0.pcap, link-type EN10OMB (Ethernet)

2.003686 arp who-has 10.1.2.4 (ff:ff:ff:ff:ff:ff) tell 10.1.2.1

2.003691 arp who-has 10.1.2.1 (ff:ff:ff:ff:ff:ff) tell 10.1.2.4

~/repos/ns-3-dev >

You can see that the CSMA channel is a broadcast medium and so all of the devices
see the ARP requests involved in the packet exchange. The remaining pcap trace will be
identical to this one.

Finally, recall that we added the ability to control the number of CSMA devices in the
simulation by command line argument. You can change this argument in the same way as
when we looked at changing the number of packets echoed in the first.cc example. Try
setting the number of “extra” devices to four:

~/repos/ns-3-dev > ./waf --run "scratch/second --nCsma=4"

Entering directory ‘/home/craigdo/repos/ns-3-dev/build’

Compilation finished successfully

Sent 1024 bytes to 10.1.2.5

Received 1024 bytes from 10.

Received 1024 bytes from 10.

~/repos/ns-3-dev >

Notice that the echo server has now been relocated to the last of the CSMA nodes, which
is 10.1.2.5 instead of the default case, 10.1.2.4. You can increase the number to your hearts
content, but remember that you will get a pcap trace file for every node in the simulation.
One thing you can do to keep from getting all of those pcap traces with nothing but ARP
exchanges in them is to be more specific about which nodes and devices you want to trace.

1.1
.2.5

Let’s take a look at scratch/second.cc and add that code enabling us to be more
specific. The file we provided used the EnablePcapAll methods of the helpers to enable
pcap on all devices. We now want to use the more specific method, EnablePcap, which takes
a node number and device number as parameters. Go ahead and replace the EnablePcapAll
calls with the calls below.

PointToPointHelper: :EnablePcap ("second", p2pNodes.Get (0)->GetId (), 0);

CsmaHelper: :EnablePcap ("second", csmaNodes.Get (nCsma)->GetId (), 0);

We know that we want to create a pcap file with the base name "second" and we also
know that the device of interest in both cases is going to be zero, so those parameters are
not really interesting. In order to get the node number, you have two choices: first, nodes

Chapter 6: Building Topologies 43

are numbered in a monotonically increasing fashion starting from zero in the order in which
you created them. One way to get a node number is to figure this number out “manually”
by contemplating the order of node creation. If you take a look at the network topology
illustration at the beginning of the file, we did this for you and you can see that the last
CSMA node is going to be node number nCsma + 1. This approach can become annoyingly
difficult in larger simulations.

An alternate way, which we use here, is to realize that the NodeContainers contain
pointers to ns-3 Node Objects. The Node Object has a method called GetId which will
return that node’s ID, which is the node number we seek. Let’s go take a look at the
Doxygen for the Node and locate that method, which is further down in the ns-3 core code
than we’ve seen so far; but sometimes you have to search diligently for useful things.

Go to the Doxygen documentation for your release (recall that you can find it on
the project web site). You can get to the Node documentation by looking through at
the “Classes” tab and scrolling down the “Class List” until you find ns3: :Node. Select
ns3: :Node and you will be taken to the documentation for the Node class. If you now scroll
down to the GetId method and select it, you will be taken to the detailed documentation
for the method. Using the GetId method can make determining node numbers much easier
in complex topologies.

Now that we have got some trace filtering in place, it is reasonable to start increasing
the number of CSMA devices in our simulation. If you build the new script and run the
simulation setting nCsma to 100, you will see the following output:

“/repos/ns-3-dev > ./waf --run "scratch/second --nCsma=100"
Entering directory ‘/home/craigdo/repos/ns-3-dev/build’
Compilation finished successfully

Sent 1024 bytes to 10.1.2.101

Received 1024 bytes from 10.1.1.1

Received 1024 bytes from 10.1.2.101

~/repos/ns-3-dev >

Note that the echo server is now located at 10.1.2.101 which corresponds to having 100
“extra” CSMA nodes with the echo server on the last one. If you list the pcap files in the
top level directory,

~/repos/ns-3-dev > ls *.pcap
second-0-0.pcap second-101-0.pcap
~/repos/ns-3-dev >

you will see that we have, in fact, only created two trace files. The trace file second-
0-0.pcap is the “leftmost” point-to-point device which is the echo packet source. The file
second-101-0.pcap corresponds to the rightmost CSMA device which is where the echo
server resides.

6.2 Building a Wireless Network Topology

In this section we are going to further expand our knowledge of ns-3 network devices and
channels to cover an example of a wireless network. Ns-3 provides a set of 802.11 models
that attempt to provide an accurate MAC-level implementation of the 802.11 specification
and a “not-so-slow” PHY-level model of the 802.11a specification.

Chapter 6: Building Topologies 44

Just as we have seen both point-to-point and CSMA topology helper objects when
constructing point-to-point topologies, we will see equivalent Wifi topology helpers in this
section. The appearance and operation of these helpers should look quite familiar to you.

We provide an example script in our examples directory. This script builds on the
second.cc script and adds a Wifi network. Go ahead and open examples/third.cc in
your favorite editor. You will have already seen enough ns-3 code to understand most of
what is going on in this example, but there are a few new things, so we will go over the
entire script and examine some of the output.

Just as in the second.cc example (and in all ns-3 examples) the file begins with an
emacs mode line and some GPL boilerplate.

Take a look at the ASCII art (reproduced below) that shows the default network topology
constructed in the example. You can see that we are going to further extend our example
by hanging a wireless network off of the left side. Notice that this is a default network
topology since you can actually vary the number of nodes created on the wired and wireless
networks. Just as in the second.cc script case, if you change nCsma, it will give you a
number of “extra” CSMA nodes. Similarly, you can set nWifi to control how many STA
(station) nodes are created in the simulation. There will always be one AP (access point)
node on the wireless network. By default there are thee “extra” CSMA nodes and three
wireless STA nodes.

The code begins by loading module include files just as was done in the second.cc
example. There are a couple of new includes corresponding to the Wifi module and the
mobility module which we will discuss below.

#include "ns3/core-module.h"

#include "ns3/simulator-module.h"
#include "ns3/node-module.h"

#include "ns3/helper-module.h"
#include "ns3/global-routing-module.h"
#include "ns3/wifi-module.h"

#include "ns3/mobility-module.h"

The network topology illustration follows:

// Default Network Topology
//

// Wifi 10.1.3.0

// AP

// * * * *

/7| | | | 10.1.1.0

// n5 n6 n7 n0 -—————————————- nl n2 n3 n4
// point-to-point | | | |
//
// LAN 10.1.2.0

You can see that we are adding a new network device to the node on the left side of
the point-to-point link that becomes the access point for the wireless network. A number
of wireless STA nodes are created to fill out the new 10.1.3.0 network as shown on the left
side of the illustration.

Chapter 6: Building Topologies 45

After the illustration, the ns-3 namespace is used and a logging component is defined.
This should all be quite familiar by now.

using namespace ns3;

NS_LOG_COMPONENT_DEFINE ("ThirdScriptExample");

As has become the norm in this tutorial, the main program begins by enabling the
UdpEchoClientApplication and UdpEchoServerApplication logging components at INFO
level so we can see some output when we run the simulation.

int

main (int argc, char *argv[])

{

LogComponentEnable ("UdpEchoClientApplication", LOG_LEVEL_INFO);
LogComponentEnable ("UdpEchoServerApplication", LOG_LEVEL_INFO);

Next, you will see more familiar code that will allow you to change the number of devices
on the CSMA and Wifi networks via command line argument.

uint32_t nCsma = 3;

uint32_t nWifi 3;

CommandLine cmd;

cmd.AddValue ("nCsma", "Number of \"extra\" CSMA nodes/devices", nCsma);
cmd.AddValue ("nWifi", "Number of wifi STA devices", nWifi);

cmd.Parse (argc,argv);

Just as in all of the previous examples, the next step is to create two nodes that we will
connect via the point-to-point link.

NodeContainer p2pNodes;
p2pNodes.Create (2);

Next, we see an old friend. We instantiate a PointToPointHelper and set the associated
default attributes so that we create a five megabit per second transmitter on devices created
using the helper and a two millisecond delay on channels created by the helper. We then
Intall the devices on the nodes and the channel between them.

PointToPointHelper pointToPoint;
pointToPoint.SetDeviceAttribute ("DataRate", StringValue ("5Mbps"));
pointToPoint.SetChannelAttribute ("Delay", StringValue ("2ms"));

NetDeviceContainer p2pDevices;
p2pDevices = pointToPoint.Install (p2pNodes);

Next, we delare another NodeContainer to hold the nodes that will be part of the bus
(CSMA) network.

NodeContainer csmaNodes;
csmaNodes.Add (p2pNodes.Get (1));
csmaNodes.Create (nCsma);

The next line of code Gets the first node (as in having an index of one) from the point-to-
point node container and adds it to the container of nodes that will get CSMA devices. The
node in question is going to end up with a point-to-point device and a CSMA device. We
then create a number of “extra” nodes that compose the remainder of the CSMA network.

Chapter 6: Building Topologies 46

We then instantiate a CsmaHelper and a NetDeviceContainer to keep track of the
CSMA net devices. Then we Install CSMA devices on the selected nodes.

CsmaHelper csma;

NetDeviceContainer csmaDevices;
csmaDevices = csma.Install (csmaNodes);

Next, we are going to create the nodes that will be part of the Wifi network. We are
going to create a number of “station” nodes as specified by the command line argument,
and we are going to use the “leftmost” node of the point-to-point link as the node for the
access point.

NodeContainer wifiStaNodes;
wifiStaNodes.Create (nWifi);
NodeContainer wifiApNode = p2pNodes.Get (0);

The next bit of code is going to be quite different from the helper-based topology gen-
eration we’'ve seen so far, so we’re going to take it line-by-line for a while. The next line of
code you will see is:

Ptr<WifiChannel> channel = CreateObject<WifiChannel> ();

Now, I'm not going to explain at this stage precisely what this all means, but hopefully
with a very short digression I can give you enough information so that this makes sense.

C++ is an object oriented programming language. Ns-3 extends the basic C++ object
model to implement a number of nifty features. We have seen the Attribute system which
is one of the major extensions we have implemented. Another extension is to provide for
relatively automatic memory management. Like many systems, ns-3 creates a base class
called Object that provides our extensions “for free” to other classes that inherit from our
class Object.

In the code snippet above, the right hand side of the expression is a call to a templated
C++ function called CreateObject. The template parameter inside the angle brackets basi-
cally tells the compiler what class it is we want to instantiate. Our system returns a smart
pointer to the object of the class that was created and assigns it to the smart pointer named
channel that is declared on the left hand side of the assignment.

The ns-3 smart pointer is also template-based. Here you see that we declare a smart
pointer to a WifiChannel which is the type of object that was created in the CreateObject
call. The feature of immediate interest here is that we are never going to have to delete the
underlying C++ object. It is handled automatically for us. Nice, eh?

The idea to take away from this discussion is that this line of code creates an ns-3
Object that will automatically bring you the benefits of the ns-3 Attribute system we’'ve
seen previously. The resulting smart pointer works with the Object to perform memory
management automatically for you. If you are interested in more details about low level
ns-3 code and exactly what it is doing, you are encouraged to explore the ns-3 manual and
our “how-to” documents.

Now, back to the example. The line of code above has created a wireless Wifi channel.
This channel model requires that we create and attach other models that describe various
behaviors. This provides an accomplished user with even more opportunity to change the
way the wireless network behaves without changing the core code.

Chapter 6: Building Topologies 47

The first opportunity we have to change the behavior of the wireless network is by pro-
viding a propagation delay model. Again, I don’t want to devolve this tutorial into a manual
on Wifi, but this model describes how the electromagnetic signals are going to propagate.
We are going to create the simplest model, the ConstantSpeedPropagationDelayModel
that, by default, has the signals propagating at a constant speed — approximately that of
the speed of light in air.

Recall that we created the WifiChannel and assigned it to a smart pointer. One of
the features of a smart pointer is that you can use it just as you would a “normal” C++
pointer. The next line of code will create a ConstantSpeedPropagationDelayModel using
the CreateObject template function and pass the resulting smart pointer to the chanel
model as an unnamed parameter of the WifiChannel SetPropagationDelayModel method.
In English, we create a model for propagation speed of electromagnetic signals and tell the
wireless channel to use it.

channel->SetPropagationDelayModel (
CreateObject<ConstantSpeedPropagationDelayModel> ());

The next lines of code use similar low-level ns-3 methods to create and set a “propagation
loss model” for the channel.

Ptr<LogDistancePropagationlLossModel> log =
CreateObject<LogDistancePropagationLossModel> () ;

log->SetReferenceModel (CreateObject<FriisPropagationLossModel> ());

channel->SetPropagationLossModel (log);

This snippet is used to tell the channel how it should calculate signal attenuation
of waves flowing in the channel. The details of these calcuations are beyond the scope
of a tutorial. You are encouraged to explore the Doxygen documentation of classes
LogDistancePropagationLossModel and FriisPropagationLossModel if you are
interested in the details. As usual, you will find the documentation in the “Classes” tab of
the Doxygen documentation.

Now we will return to more familiar ground. We next create a WifiHelper object and
set two default atributes that it will use when creating the actual devices.

WifiHelper wifi;

wifi.SetPhy ("ns3::WifiPhy");

wifi.SetRemoteStationManager ('"ns3::ArfWifiManager");

The SetPhy method tells the helper the type of physical layer class we want it to instan-
tiate when building Wifi devices. In this case, the script is asking for physical layer models
based on the YANS 802.11a model. Again, details are avialable in Doxygen.

The SetRemoteStationManager method tells the helper the type of rate control algo-
rithm to use. Here, it is asking the helper to use the AARF algorithm — details are, of
course, avialable in Doxygen.

Just as we can vary attributes describing the physical layer, we can do the same for the
MAC layer.

Ssid ssid = Ssid ("ns-3-ssid");

wifi.SetMac ("ns3::NgstaWifiMac",

Chapter 6: Building Topologies 48

"Ssid", SsidValue (ssid),
"ActiveProbing", BooleanValue (false));

This code first creates an 802.11 service set identifier (SSID) object that will be used to
set the value of the “Ssid” Attribute of the MAC layer implementation. The particular
kind of MAC layer is specified by Attribute as being of the "ns3::NqgstaWifiMac" type.
This means that the MAC will use a “non-QoS station” (ngsta) state machine. Finally, the
“ActiveProbing” attribute is set to false. This means that probe requests will not be sent
by MACs created by this helper.

Again, for the next lines of code we are back on familiar ground. This code will Install
Wifi net devices on the nodes we have created as STA nodes and will tie them to the
WifiChannel. Since we created the channel manually rather than having the helper do it
for us, we have to pass it into the helper when we call the Install method.

NetDeviceContainer staDevices;
staDevices = wifi.Install (wifiStaNodes, channel);

We have configured Wifi for all of our STA nodes, and now we need to configure the
AP (access point) node. We begin this process by changing the default Attributes of the
WifiHelper to reflect the requirements of the AP.

wifi.SetMac ("ns3::NgapWifiMac",
"Ssid", SsidValue (ssid),
"BeaconGeneration", BooleanValue (true),
"BeaconInterval", TimeValue (Seconds (2.5)));

In this case, the WifiHelper is going to create MAC layers of the “ns3::NqapWifiMac”
(Non-Qos Access Point) type. We set the “BeaconGeneration” attribute to true and also
set an interval between beacons of 2.5 seconds.

The next lines create the single AP and connect it to the channel in a familiar way.

NetDeviceContainer apDevices;
apDevices = wifi.Install (wifiApNode, channel);

Now, we are going to add mobility models. We want the STA nodes to be mobile,
wandering around inside a bounding box, and we want to make the AP node stationary. We
use the MobilityHelper to make this easy for us. First, we instantiate a MobilityHelper
obejct and set some attributes controlling the “position allocator” functionality.

MobilityHelper mobility;

mobility.SetPositionAllocator ("ns3::GridPositionAllocator",
"MinX", DoubleValue (0.0),
"MinY", DoubleValue (0.0),
"DeltaX", DoubleValue (5.0),
"DeltaY", DoubleValue (10.0),
"GridWidth", UintegerValue (3),
"LayoutType", StringValue ("RowFirst"));

This code tells the mobility helper to use a two-dimensional grid to initially place the
STA nodes. Feel free to explore the Doxygen for class ns3::GridPositionAllocator to
see exactly what is being done.

Chapter 6: Building Topologies 49

We have aranged our nodes on an initial grid, but now we need to tell them how to
move. We choose the RandomWalk2dMobilityModel which has the nodes move in a random
direction at a random speed around inside a bounding box.

mobility.SetMobilityModel ("ns3::RandomWalk2dMobilityModel",
"Bounds", RectangleValue (Rectangle (-50, 50, -50, 50)));

We now tell the MobilityHelper to install the mobility models on the STA nodes.
mobility.Install (wifiStaNodes);

We want the access point to remain in a fixed position during the simulation. We accom-
plish this by setting the mobility model for this node to be the ns3: :StaticMobilityModel:

mobility.SetMobilityModel ("ns3::StaticMobilityModel");

mobility.Install (wifiApNode);

We now have our nodes, devices and channels created, and mobility models chosen for
the Wifi nodes, but we have no protocol stacks present. Just as we have done previously
many times, we will use the InternetStackHelper to install these stacks.

InternetStackHelper stack;
stack.Install (csmaNodes) ;
stack.Install (wifiApNode);
stack.Install (wifiStaNodes);

Just as in the second. cc example script, we are going to use the Ipv4AddressHelper to
assign IP addresses to our device interfaces. First we use the network 10.1.1.0 to create the
two addresses needed for our two point-to-point devices. Then we use network 10.1.2.0 to
assign addresses the the CSMA network and then we assign addresses from network 10.1.3.0
to both the STA devices and the AP on the wireless network.

Ipv4AddressHelper address;

address.SetBase ("10.1.1.0", "255.255.255.0");
Ipv4InterfaceContainer p2plInterfaces;
p2pInterfaces = address.Assign (p2pDevices);

address.SetBase ("10.1.2.0", "255.255.255.0");
Ipv4InterfaceContainer csmalnterfaces;
csmalnterfaces = address.Assign (csmaDevices);

address.SetBase ("10.1.3.0", "255.255.255.0");

address.Assign (staDevices);

address.Assign (apDevices);

We put the echo server on the “rightmost” node in the illustration at the start of the
file. We have done this before.

UdpEchoServerHelper echoServer (9);

ApplicationContainer serverApps = echoServer.Install (csmaNodes.Get (nCsma));|]
serverApps.Start (Seconds (1.0));
serverApps.Stop (Seconds (10.0));

And we put the echo client on the last STA node we created, pointing it to the server
on the CSMA network. We have also seen similar operations before.

Chapter 6: Building Topologies 50

UdpEchoClientHelper echoClient (csmalnterfaces.GetAddress (nCsma), 9);
echoClient.SetAttribute ("MaxPackets", UintegerValue (1));
echoClient.SetAttribute ("Interval", TimeValue (Seconds (1.)));
echoClient.SetAttribute ("PacketSize", UintegerValue (1024));

ApplicationContainer clientApps =
echoClient.Install (wifiStaNodes.Get (nWifi - 1));

clientApps.Start (Seconds (2.0));

clientApps.Stop (Seconds (10.0));

Since we have built an internetwork here, we need enable internetwork routing just as
we did in the second.cc example script.

GlobalRouteManager: :PopulateRoutingTables ();

One thing that can surprise some users is the fact that the simulation we just created
will never “naturally” stop. This is because we asked the wireless access point to generate
beacons. It will generate beacons forever, so we must tell the simulator to stop even though it
may have beacon generation events scheduled. The following line of code tells the simulator
to stop so that we don’t simulate beacons forever and enter what is essentially an endless
loop.

Simulator::Stop (Seconds (10.0));

We use the same trick as in the second. cc script to only generate pcap traces from the
nodes we find interesting. Note that we use the same “formula” to get pcap tracing enabled
on Wifi devices as we did on the CSMA and point-to-point devices.

WifiHelper: :EnablePcap ("third",
wifiStaNodes.Get (aWifi - 1)->GetId (), 0);

CsmaHelper: :EnablePcap ("third",
csmaNodes.Get (nCsma)->GetId (), 0);

Finally, we actually run the simulation, clean up and then exit the program.

Simulator::Run ();
Simulator: :Destroy QO ;
return O;

}

In order to run this example, you have to copy the third.cc example script into the
scratch directory and use Waf to build just as you did with the second.cc example. If you
are in the top-level directory of the repository you would type,

cp examples/third.cc scratch/
./waf
./waf --run scratch/third

Since we have set up the UDP echo applications just as we did in the second. cc script,
you will see similar output.

~/repos/ns-3-dev > ./waf --run scratch/third

Entering directory ¢/home/craigdo/repos/ns-3-dev/build’
Compilation finished successfully

Sent 1024 bytes to 10.1.2.4

Received 1024 bytes from 10.1.3.3

Chapter 6: Building Topologies 51

Received 1024 bytes from 10.1.2.4
~/repos/ns-3-dev >

Recall that the first message, Sent 1024 bytes to 10.1.2.4 is the UDP echo client
sending a packet to the server. In this case, the client is on the wireless network (10.1.3.0).
The second message, Received 1024 bytes from 10.1.3.3, is from the UDP echo server,
generated when it receives the echo packet. The final message, Received 1024 bytes from
10.1.2.4 is from the echo client, indicating that it has received its echo back from the
server.

If you now go and look in the top level directory, you will find two trace files:

~/repos/ns-3-dev > ls *.pcap

third-4-0.pcap third-7-0.pcap

~/repos/ns-3-dev >

The file “third-4-0.pcap” corresponds to the pcap trace for node four - device zero. This
is the CSMA network node that acted as the echo server. Take a look at the tcpdump for
this device:

~/repos/ns-3-dev > tcpdump -r third-4-0.pcap -nn -tt

reading from file third-4-0.pcap, link-type EN10OMB (Ethernet)
.005855 arp who-has 10.1.2.4 (ff:ff:ff:ff:ff:ff) tell 10.1.2.1
.005855 arp reply 10.1.2.4 is-at 00:00:00:00:00:06
.005859 IP 10.1.3.3.49153 > 10.1.2.4.9: UDP, length 1024
.006859 arp who-has 10.1.2.1 (ff:ff:ff:ff:ff:ff) tell 10.1.2.4
.005861 arp reply 10.1.2.1 is-at 00:00:00:00:00:03
.0056861 IP 10.1.2.4.9 > 10.1.3.3.49153: UDP, length 1024
~/repos/ns-3-dev >

N NDNDNNDDN

This should be familiar and easily understood. If you've forgotten, go back and look at
the discussion in second.cc. This is the same sequence.

Now, take a look at the other trace file, “third-7-0.pcap.” This is the trace file for the
wireless STA node that acts as the echo client.
~/repos/ns-3-dev > tcpdump -r third-7-0.pcap -nn -tt
reading from file third-7-0.pcap, link-type IEEE802_11 (802.11)
0.000146 Beacon (ns-3-ssid)
0
.000180 Assoc Request (ns-3-ssid)
.000336 Acknowledgment RA:00:00:00:00:00:07
.000454 Assoc Response AID(0) :: Succesful
.000514 Acknowledgment RA:00:00:00:00:00:0a
.000746 Assoc Request (ns-3-ssid)
.000902 Acknowledgment RA:00:00:00:00:00:09
.001020 Assoc Response AID(0) :: Succesful
.001036 Acknowledgment RA:00:00:00:00:00:0a
.001219 Assoc Request (ns-3-ssid)
.001279 Acknowledgment RA:00:00:00:00:00:08
.001478 Assoc Response AID(0) :: Succesful
.001538 Acknowledgment RA:00:00:00:00:00:0a
.000000 arp who-has 10.1.3.4 (ff:ff:ff:ff:ff:ff) tell 10.1.3.3

=]

N OO OOOO OO O O O Oo

Chapter 6: Building Topologies 52

.000172 Acknowledgment RA:00:00:00:00:00:09

.000318 arp who-has 10.1.3.4 (ff:ff:ff:ff:ff:ff) tell 10.1.3.3
.000581 arp reply 10.1.3.4 is-at 00:00:00:00:00:0a

.000597 Acknowledgment RA:00:00:00:00:00:0a

.000693 IP 10.1.3.3.49153 > 10.1.2.4.9: UDP, length 1024
.002229 Acknowledgment RA:00:00:00:00:00:09

.009663 arp who-has 10.1.3.3 (ff:ff:ff:ff:ff:ff) tell 10.1.3.4
.009697 arp reply 10.1.3.3 is-at 00:00:00:00:00:09

.009869 Acknowledgment RA:00:00:00:00:00:09

.011487 IP 10.1.2.4.9 > 10.1.3.3.49153: UDP, length 1024
.011503 Acknowledgment RA:00:00:00:00:00:0a

.500112 Beacon[]802.11]

.000112 Beacon[]802.11]

.500112 Beacon[|802.11]

~/repos/ns-3-dev >

N O N NDNDDNDNDNDNDNDNDDNDDNDNDDND

You can see that the link type is now 802.11 as you would expect. We leave it as an
exercise to parse the dump and trace packets across the internetwork.

Now, we spent a lot of time setting up mobility models for the wireless network and so it
would be a shame to finish up without even showing that the STA nodes are actually moving
around. Let’s do this by hooking into the MobilityModel course change trace source. This
is usually considered a fairly advanced topic, but let’s just go for it.

As mentioned in the Tweaking Ns-3 section, the ns-3 tracing system is divided into
trace sources and trace sinks, and we provide functions to connect the two. We will use the
mobility model predefined course change trace source to originate the trace events. We will
need to write a trace sink to connect to that source that will display some pretty information
for us. Despite its reputation as being difficult, it’s really quite simple. Just before the main
program of the scratch/third.cc script, add the following function:

void

CourseChange (std::string context, Ptr<const MobilityModel> model)

{

Vector position = model->GetPosition ();
NS_LOG_UNCOND (context <<
" x = " << position.x << ", y = " << position.y);

¥

This code just pulls the position information from the mobility model and uncondition-
ally logs the x and y position of the node. We are going to arrange for this function to be
called every time the wireless node with the echo client changes its position. We do this
using the Config::Connect function. Add the following lines of code to the script just
before the Simulator: :Run call.

std::ostringstream oss;

oss <<
"/NodeList/" << wifiStaNodes.Get (nWifi - 1)->GetId () <<
"/$ns3: :MobilityModel/CourseChange" ;

Config::Connect (oss.str (), MakeCallback (&CourseChange)) ;

Chapter 6: Building Topologies 53

What we do here is to create a string containing the tracing namespace path of the
event to which we want to connect. First, we have to figure out which node it is we want
using the GetId method as described earlier. In the case of the default number of CSMA
and wireless nodes, this turns out to be node seven and the tracing namespace path to the
mobility model would look like,

/NodeList/7/$ns3: :MobilityModel/CourseChange

Based on the discussion in the tracing section, you can easily infer that this trace path
references the seventh node in the NodeList. It specifies what is called an aggregated object
of type ns3::MobilityModel. The dollar sign prefix implies that the MobilityModel is
aggregated to node seven. The last component of the path means that we are hooking into
the “CourseChange” event of that model.

We make a connection between the trace source in node seven with our trace sink by
calling Config: :Connect and passing this namespace path. Once this is done, every course
change event on node seven will be hooked into our trace sink, which will in turn print out
the new position.

If you now run the simulation, you will see the course changes displayed as they happen.

~/repos/ns-3-dev > ./waf --run scratch/third
Entering directory ‘/home/craigdo/repos/ns-3-dev/build’
Compilation finished successfully

/NodeList/7/$ns3: :MobilityModel/CourseChange x = 10, y = 0
/NodeList/7/$ns3: :MobilityModel/CourseChange x 9.1304, y = 0.493761
/NodeList/7/$ns3: :MobilityModel/CourseChange x = 8.70417, y = 1.39837
/NodeList/7/$ns3: :MobilityModel/CourseChange x = 7.94799, y = 2.05274
/NodeList/7/$ns3: :MobilityModel/CourseChange x = 8.82597, y = 1.57404
/NodeList/7/$ns3: :MobilityModel/CourseChange x = 8.3003, y = 0.723347
Sent 1024 bytes to 10.1.2.4

Received 1024 bytes from 10.1.3.3

Received 1024 bytes from 10.1.2.4

/NodeList/7/$ns3: :MobilityModel/CourseChange x = 8.74083, y = 1.62109
/NodeList/7/$ns3: :MobilityModel/CourseChange x = 9.00146, y = 0.655647
/NodeList/7/$ns3: :MobilityModel/CourseChange x 9.98731, y 0.823279
/NodeList/7/$ns3: :MobilityModel/CourseChange x = 9.50206, y = 1.69766
/NodeList/7/$ns3: :MobilityModel/CourseChange x = 8.68108, y = 2.26862
/NodeList/7/$ns3: :MobilityModel/CourseChange x = 9.25992, y = 1.45317
/NodeList/7/$ns3: :MobilityModel/CourseChange x = 8.55655, y = 0.742346
/NodeList/7/$ns3: :MobilityModel/CourseChange x = 8.21992, y = 1.68398
/NodeList/7/$ns3: :MobilityModel/CourseChange x = 8.81273, y = 0.878638
/NodeList/7/$ns3: :MobilityModel/CourseChange x = 7.83171, y = 1.07256
/NodeList/7/$ns3: :MobilityModel/CourseChange x = 7.60027, y = 0.0997156
/NodeList/7/$ns3: :MobilityModel/CourseChange x = 8.45367, y = 0.620978
/NodeList/7/$ns3: :MobilityModel/CourseChange x = 7.68484, y = 1.26043
/NodeList/7/$ns3: :MobilityModel/CourseChange x = 8.53659, y = 0.736479
/NodeList/7/$ns3: :MobilityModel/CourseChange x = 9.51876, y = 0.548502
/NodeList/7/$ns3: :MobilityModel/CourseChange x = 9.89778, y = 1.47389
/NodeList/7/$ns3: :MobilityModel/CourseChange x = 8.98984, y = 1.893
/NodeList/7/$ns3: :MobilityModel/CourseChange x = 9.91524, y = 1.51402

Chapter 6: Building Topologies 54

/NodeList/7/$ns3: :MobilityModel/CourseChange x = 8.98761, y = 1.14054
/NodeList/7/$ns3: :MobilityModel/CourseChange x = 8.16617, y = 0.570239
/NodeList/7/$ns3: :MobilityModel/CourseChange x = 8.02954, y = 1.56086
/NodeList/7/$ns3: :MobilityModel/CourseChange x = 8.09551, y = 2.55868

~/repos/ns-3-dev >

If you are feeling brave, there is a list of all trace sources in the ns-3 Doxygen which
you can find in the “NS-3 Modules” section. Under the “core” section, you will find a link
to “The list of all trace sources.” You may find it interesting to try and hook some of
these traces yourself. Additionally in the “NS-3 Modules” documentation, there is a link
to “The list of all attributes.” You can set the default value of any of these atributes via
the command line as we have previously discussed.

We have just scratched the surface of ns-3 in this tutorial, but we hope we have covered
enough to get you started doing useful work.

Chapter 6: Building Topologies

— The ns-3 development team.

A

Application 9
architecture 3
ascii trace dequeue operation 32
ascii trace drop operation 32
ascii trace enqueue operation 32
ascii trace receive operation 32
ASCIT tracing . . .ooooveee e 31

build.... ..o 3
building debug version with Waf............... 6
building with Waf 6
bus network topology 36

Gt 4
Channel........ i, 10
class Application.......................... ... 9
classNode i 9
command line arguments..................... 26
compiling with Waf 6
configuring Waf............................... 6
contributing 1
CygwWinooii 4,5

D

documentation 3

E

Ethernet 10

F

first script. ... 11
Arst.CC .ot 11
Arst.tr ... 32

Linux. ... 4,5
logging. ... 21
Logitech 4

55
M
make ... 3
Mercurial 3,5
mercurial repository............ 3
MinGW ..o 4
N
net device number 33
NetDevice. 10
Node ... 9
node number 33
ns-3-dev repository............. L 3
NS.LOG ... 22, 25
P
parsing ascii traces............. 32
PCAD - ettt e 34
pecap tracing. i 34
R
regression tests 7
regression tests with Waf...................... 6
release repository oL 3
TEPOSILOTY « .ottt 5
running a script with Waf 8
simulation time.............. 33
smart pointer............ 33
SOCKETS . oo 4
software configuration management 3
systemcall 9
T
tarball 5
tepdump ... 34
toolchain L 4,5
tOpOology .« 11, 36, 43
topology helper........... 11
traceevent il 33
tracing............ i 31
tracing packets L 31
unit tests. ... 7
unit tests with Waf 6
Waf ..o 3,5
wireless network topology 43
Wireshark, 34, 35

WWW.NSHAINLOTE .« v veveve e eeeeeaeuns 3

	Introduction
	For ns-2 Users
	Contributing
	Tutorial Organization

	Resources
	The Web
	Mercurial
	Waf
	Development Environment
	Socket Programming

	Getting Started
	Downloading ns-3
	Building ns-3
	Testing ns-3
	Running a Script

	Conceptual Overview
	Key Abstractions
	Node
	Application
	Channel
	Net Device
	Topology Helpers

	A First ns-3 Script
	Boilerplate
	Module Includes
	Ns3 Namespace
	Logging
	Main Function
	Topology Helpers
	NodeContainer
	PointToPointHelper
	NetDeviceContainer
	InternetStackHelper
	Ipv4AddressHelper

	Applications
	UdpEchoServerHelper
	UdpEchoClientHelper

	Simulator
	Building Your Script

	Ns-3 Source Code

	Tweaking ns-3
	Using the Logging Module
	Logging Overview
	Enabling Logging
	Adding Logging to your Code

	Using Command Line Arguments
	Overriding Default Attributes
	Hooking Your Own Values

	Using the Tracing System
	ASCII Tracing
	Parsing Ascii Traces

	PCAP Tracing
	Reading output with tcpdump
	Reading output with Wireshark

	Building Topologies
	Building a Bus Network Topology
	Building a Wireless Network Topology

