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Abstract

We discuss findings from a large-scale study of Internet packet dy-
namics conducted by tracing 20,000 TCP bulk transfers between
35 Internet sites. Because we traced each 100 Kbyte transferat
both the sender and the receiver, the measurements allow us to dis-
tinguish between the end-to-end behaviors due to the different di-
rections of the Internet paths, which often exhibit asymmetries. We
characterize the prevalence of unusual network events suchas out-
of-order delivery and packet corruption; discuss a robust receiver-
based algorithm for estimating “bottleneck bandwidth” that ad-
dresses deficiencies discovered in techniques based on “packet
pair”; investigate patterns of packet loss, finding that loss events
are not well-modeled as independent and, furthermore, thatthe dis-
tribution of the duration of loss events exhibits infinite variance; and
analyze variations in packet transit delays as indicators of conges-
tion periods, finding that congestion periods also span a wide range
of time scales.

1 Introduction

As the Internet grows larger, measuring and characterizing
its dynamics grows harder. Part of the problem is how
quickly the network changes. Another part, though, is its
increasing heterogeneity. It is more and more difficult to
measure a plausibly representative cross-section of its behav-
ior. The few studies to date of end-to-end packet dynamics
have all been confined to measuring a handful of Internet�This paper appears in the Proceedings of SIGCOMM ' 97. The work
was supported by the Director, Office of Energy Research, Scientific Com-
puting Staff, of the U.S. Department of Energy under Contract No. DE-
AC03-76SF00098.
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paths, because of the great logistical difficulties presented
by larger-scale measurement [Mo92, Bo93, CPB93, Mu94].
Consequently, it is hard to gauge how representative their
findings are for today's Internet. Recently, we devised a mea-
surement framework in which a number of sites run special
measurement daemons (“NPDs”) to facilitate measurement.
With this framework, the number of Internet paths available
for measurement grows asN2 forN sites, yielding an attrac-
tive scaling. We previously used the framework withN = 37
sites to study end-to-end routing dynamics of about 1,000 In-
ternet paths [Pa96].

In this study we report on a large-scale experiment to study
end-to-end Internet packet dynamics.1 Our analysis is based
on measurements of TCP bulk transfers conducted between
35 NPD sites (x 2). Using TCP—rather than fixed-rate UDP
or ICMP “echo” packets as done in [Bo93, CPB93, Mu94]—
reaps significant benefits. First, TCP traffic is “real world,”
since TCP is widely used in today's Internet. Consequently,
any network path properties we can derive from measure-
ments of a TCP transfer can potentially be directly applied
to tuning TCP performance. Second, TCP packet streams al-
low fine-scale probing without unduly loading the network,
since TCP adapts its transmission rate to current congestion
levels.

Using TCP, however, also incurs two serious analysis
headaches. First, we need to distinguish between the ap-
parently intertwined effects of the transport protocol and the
network. To do so, we developedtcpanaly, a program that
understands the specifics of the different TCP implementa-
tions in our study and thus can separate TCP behavior from
network behavior [Pa97a].tcpanaly also forms the basis
for the analysis in this paper: after removing TCP effects, it
then computes a wide range of statistics concerning network
dynamics.

Second, TCP packets are sent over a wide range of time
scales, from milliseconds to many seconds between consecu-1This paper is necessarily terse due to space limitations. A longer ver-
sion is available [Pa97b].



tive packets. Such irregular spacing greatly complicates cor-
relational and frequency-domain analysis, because a stream
of TCP packets does not give us a traditional time series of
constant-rate observations to work with. Consequently, in
this paper we do not attempt these sorts of analyses, though
we hope to pursue them in future work. See also [Mu94]
for previous work in applying frequency-domain analysis to
Internet paths.

In x 3 we characterize unusual network behavior: out-
of-order delivery, replication, and packet corruption. Then
in x 4 we discuss a robust algorithm for estimating the
“bottleneck” bandwidth that limits a connection's maximum
rate. This estimation is crucial for subsequent analysis be-
cause knowing the bottleneck rate lets us determine when
the closely-spaced TCP data packets used for our network
probes arecorrelated with each other. (We note that the
stream of ack packets returned by the TCP data receiver in
general isnot correlated, due to the small size and larger
spacing of the acks.) Once we can determine which probes
were correlated and which not, we then can turn to analysis
of end-to-end Internet packet loss (x 5) and delay (x 6). Inx 7
we briefly summarize our findings, a number of which chal-
lenge commonly-held assumptions about network behavior.

2 The Measurements

We gathered our measurements using the “NPD” measure-
ment framework we developed and discussed in [Pa96].
35 sites participated in two experimental runs. The sites in-
clude educational institutes, research labs, network service
providers, and commercial companies, in 9 countries. We
conducted the first run,N1, during Dec. 1994, and the sec-
ond,N2, during Nov–Dec. 1995. Thus, differences betweenN1 andN2 give an indication how Internet packet dynamics
changed during the course of 1995. Throughout this paper,
when discussing such differences, we always limit discus-
sion to the 21 sites that participated in bothN1 andN2.

Each measurement was made by instructing daemons run-
ning at two of the sites to send or receive a 100 Kbyte
TCP bulk transfer, and to trace the results usingtcpdump

[JLM89]. Measurements occurred at Poisson intervals,
which, in principle, results in unbiased measurement, even
if the sampling rate varies [Pa96]. InN1, the mean per-site
sampling interval was about 2 hours, with each site randomly
paired with another. Sites typically participated in about
200 measurements, and we gathered a total of 2,800 pairs
of traces. InN2, we sampled pairs of sites in a series of
groupedmeasurements, varying the sampling rate from min-
utes to days, with most rates on the order of 4–30 minutes.
These groups then give us observations of the path between
the site pair over a wide range of time scales. Sites typi-
cally participated in about 1,200 measurements, for a total
of 18,000 trace pairs. In addition to the different sampling
rates, the other difference betweenN1 andN2 is that inN2
we used Unix socket options to assure that the sending and

receiving TCPs had big “windows,” to prevent window limi-
tations from throttling the transfer's throughput.

We limited measurements to a total of 10 minutes. This
limit leads to under-representationof those times during
which network conditions were poor enough to make it dif-
ficult to complete a 100 Kbyte transfer in that much time.
Thus, our measurements arebiasedtowards more favorable
network conditions. In [Pa97b] we show that the bias is neg-
ligible for North American sites, but noticeable for European
sites.

3 Network Pathologies

We begin with an analysis of network behavior we might
consider “pathological,” meaning unusual or unexpected:
out-of-order delivery, packet replication, and packet corrup-
tion. It is important to recognize pathological behaviors so
subsequent analysis of packet loss and delay is not skewed
by their presence. For example, it is very difficult to perform
any sort of sound queueing delay analysis in the presence
of out-of-order delivery, since the latter indicates that a first-
in-first-out (FIFO) queueing model of the network does not
apply.

3.1 Out-of-order delivery

Even though Internet routers employ FIFO queueing, any
time a route changes, if the new route offers a lower delay
than the old one, then reordering can occur [Mo92]. Since
we recorded packets at both ends of each TCP connection,
we can detect network reordering, as follows. First, we re-
move from our analysis any trace pairs suffering packet filter
errors [Pa97a]. Then, for each arriving packetpi, we check
whether it was sent after the last non-reordered packet. If so,
then it becomes the new such packet. Otherwise, we count
its arrival as an instance of a network reordering. So, for ex-
ample, if a flight of ten packets all arrive in the order sent
except the last one arrives before all of the others, we con-
sider this to reflect 9 reordered packets rather than 1. Using
this definition emphasizes “late” arrivals rather than “prema-
ture” arrivals. It turns out that counting late arrivals gives
somewhat higher (� +25%) numbers than counting prema-
ture arrivals—not a big difference, though.

Observations of reordering. Out-of-order delivery is
fairly prevalent in the Internet. InN1, 36% of the traces
included at least one packet (data or ack) delivered out of or-
der, while inN2, 12% did. Overall, 2.0% ofall of theN1
data packets and 0.6% of the acks arrived out of order (0.3%
and 0.1% inN2). Data packets are no doubt more often re-
ordered than acks because they are frequently sent closer to-
gether (due to ack-every-other policies), so their reordering
requires less of a difference in transit times.

We shouldnot infer from the differences between reorder-
ing inN1 andN2 that reordering became less likely over the
course of 1995, because out-of-order delivery varies greatly
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Figure 1: Out-of-order delivery with two distinct slopes

from site-to-site. For example, fully 15% of the data pack-
ets sent by the “ucol” site2 duringN1 arrived out of order,
much higher than the 2.0% overall average. As discussed in
[Pa96], we do not claim that the individual sites participating
in the measurement framework are plausibly representative
of Internet sites in general, so site-specific behavior cannot
be argued to reflect general Internet behavior.

Reordering is also highly asymmetric. For example, only
1.5% of the data packets sentto ucol duringN1 arrived out
of order. This means a sender cannot soundly infer whether
the packets it sends are likely to be reordered, based on ob-
servations of the acks it receives, which is too bad, as other-
wise the reordering information would aid in determining the
optimal duplicate ack threshold to use for fast retransmission
(see below).

The site-to-site variation in reordering coincides with our
earlier findings concerning route flutter among the same sites
[Pa96]. We identified two sites as particularly exhibiting flut-
ter, ucol and the “wustl” site. For the part ofN1 during
which wustl exhibited route flutter, 24% of all of the data
packets it sent arrived out of order, a rather stunning degree
of reordering. If we eliminateucol and wustl from the
analysis, then the proportion of all of theN1 data packets de-
livered out-of-order falls by a factor of two. We also note that
in N2, packets sent byucol were reordered only 25 times
out of nearly 100,000 sent, though 3.3% of the data packets
sentto ucol arrived out of order, dramatizing how over long
time scales, site-specific effects can completely change.

Thus, we should not interpret the prevalence of out-of-
order delivery summarized above as giving representative
numbers for the Internet, but instead form the rule of thumb:
Internet paths aresometimessubject to a high incidence of
reordering, but the effect is strongly site-dependent, and ap-
parently correlated with route fluttering, which makes sense
since route fluttering provides a mechanism for frequently
reordering packets.

We observed reordering rates as high as 36% of all pack-
ets arriving in a single connection. Interestingly, some of the
most highly reordered connections did not sufferanypacket
loss, and no needless retransmissions due to false signals
from duplicate acks. We also occasionally observed humon-
gous reordering “gaps.” However, the evidence suggests that2See [Pa96] for specifics concerning the sites mentioned in this paper.

these gaps are not due to route changes, but a different effect.
Figure 1 shows a sequence plot exhibiting a massive reorder-
ing event. This plot reflects packet arrivals at the TCP re-
ceiver, where each square marks the upper sequence number
of an arriving data packet. All packets were sent in increas-
ing sequence order.

Fitting a line to the upper points yields a data rate of a
little over 170 Kbyte/sec, which was indeed the true (T1)
bottleneck rate (x 4). The slope of the packets deliveredlate,
though, is just under 1 Mbyte/sec, consistent with an Ether-
net bottleneck. What has apparently happened is that a router
with Ethernet-limited connectivity to the receiver stopped
forwarding packets for 110 msec just as sequence 72,705 ar-
rived, most likely because at that point it processed a rout-
ing update [FJ94]. It finished between the arrival of 91,137
and 91,649, and began forwarding packets normally again
at their arrival rate, namely T1 speed. Meanwhile, it had
queued 35 packets while processing the update, and these
it now finally forwarded whenever it had a chance, so they
went out as quickly as possible, namely at Ethernet speed,
but interspersed with new arrivals.

We observed this pattern a number of times in our data—
not frequent enough to conclude that it is anything but a
pathology, but often enough to suggest that significant mo-
mentary increases in networking delay can be due to effects
different from both route changes and queueing; most likely
due to router forwarding lulls.

Impact of reordering. While out-of-order delivery can
violate one's assumptions about the network—in particular,
the abstraction that it is well-modeled as a series of FIFO
queueing servers—we find it often has little impact on TCP
performance. One way it can make a difference, however, is
in determining the TCP “duplicate ack” threshold a sender
uses to infer that a packet requires retransmission. If the net-
work never exhibited reordering, then as soon as the receiver
observed a packet arriving that created a sequence “hole,”
it would know that the expected in-sequence packet was
dropped, and could signal to the sender calling for prompt
retransmission. Because of reordering, however, the receiver
doesnot know whether the packet in fact was dropped; it
may instead just be late. Presently, TCP senders retransmit
if Nd = 3 “dups” arrive, a value chosen so that “false” dups
caused by out-of-order delivery are unlikely to lead to spuri-
ous retransmissions.

The value ofNd = 3 was chosen primarily to assure that
the threshold was conservative. Large-scale measurement
studies were not available to further guide the selection of
the threshold. We now examine two possible ways to im-
prove the fast retransmit mechanism: by delaying the genera-
tion of dups to better disambiguate packet loss from reorder-
ing, and by altering the threshold to improve the balance be-
tween seizing retransmission opportunities, versus avoiding
unneeded retransmissions.

We first look at packet reordering time scales to determine
how long a receiver needs to wait to disambiguate reorder-
ing from loss. We only look at the time scales of data packet
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reorderings, since ack reorderings do not affect the fast re-
transmission process. We find a wide range of times be-
tween an out-of-order arrival and the later arrival of the last
packet sent before it. One noteworthy artifact in the distri-
bution is the presence of “spikes” at particular values, the
strongest at 81 msec. This turns out to be due to a 56 Kbit/sec
link, which has a bottleneck bandwidth of about 6,320 user
data bytes/sec. Consequently, transmitting a 512 byte packet
across the link requires 81.0 msec, so data packets of this size
can arrive no closer, even if reordered. Thus we see that re-
ordering can have associated with it aminimumtime, which
can be quite large.

Inspecting theN1 distributions further, we find that a strat-
egy of waiting 20 msec would identify 70% of the out-
of-order deliveries. ForN2, the same proportion can be
achieved waiting 8 msec, due to its overall shorter reorder-
ing times (presumably due to overall higher bandwidths).
Thus, even though the upper end of the distribution is very
large (12 seconds!), a generally modest wait serves to disam-
biguate most sequence holes.

We now look at the degree to which false fast retransmit
signals due to reordering are actually a problem. We clas-
sify each sequence of dups as eithergoodor bad, depending
on whether a retransmission in response to it was necessary
or unnecessary. When considering a refinement to the fast
retransmission mechanism, our interest lies in the resulting
ratio of good to bad, Rg:b, controlled by both the dup ack
threshold valueNd we consider, and thewaiting time, W ,
observed by the receiver before generating a dup upon the
advent of a sequence hole.

For current TCP,Nd = 3 dups andW = 0. For these
values, we find inN1, Rg:b = 22, and inN2, Rg:b = 300!
The order of magnitude improvement betweenN1 andN2 is
due to the use inN2 of bigger windows (x 2), and hence more
opportunity for generatinggooddups. Clearly, the current
scheme works well. WhileNd = 4 improvesRg:b by about
a factor of 2.5, it also diminishes fast retransmit opportunities
by about 30%, a significant loss.

ForNd = 2, we gain about 65–70% more fast retransmit
opportunities, a hefty improvement, each generally saving a
connection from an expensive timeout retransmission. The
cost, however, is thatRg:b falls by about a factor of three.
If the receiving TCP waitedW = 20 msec before generat-
ing a second dup, thenRg:b falls only slightly (30% forN1,
not at all forN2). Unfortunately, adding to TCPsNd = 2
coupled with theW = 20 msec delay requires both sender
and receiver modifications, greatly increasing the problem
of deployingthe change. Since partial deployment of only
the sender change (Nd = 2) significantly increases spuri-
ous retransmissions, we conclude that, due to the size of the
Internet's installed base, safely loweringNd is impractical.

We note that the TCPselective acknowledgement
(“SACK”) option, now pending standardization, also holds
promise for honing TCP retransmission [MMSR96]. SACK
provides sufficiently fine-grained acknowledgement infor-
mation that the sending TCP can generally tell which packets

require retransmission and which have safely arrived (x 5.4).
To gain any benefits from SACK, however, requires that both
the sender and the receiver support the option, so the deploy-
ment problems are similar to those discussed above. Fur-
thermore, use of SACK aids a TCP in determiningwhat to
retransmit, but notwhento retransmit. Because these consid-
erations are orthogonal, investigating the effects of loweringNd to 2 merits investigation, even in face of impending de-
ployment of SACK.

We observed one other form of dup ack series potentially
leading to unnecessary retransmission. Sometimes a series
occurs for which the original ack (of which the others are
dups) had acknowledgedall of the outstanding data. When
this occurs, the subsequent dups arealwaysdue to an un-
necessary retransmission arriving at the receiving TCP, un-
til at least a round-trip time (RTT) after the sending TCP
sends new data. ForNd = 3, these sorts of series are 2-
15 times more frequent thanbadseries, which is why they
merit discussion. They are about 10 times rarer thangood
series. They occur during retransmission periods when the
sender has already filled all of the sequence holes and is now
retransmitting unnecessarily. Use of SACK eliminates these
series. So would the following heuristic: whenever a TCP re-
ceives an ack, it notes whether the ack covers all of the data
sent so far. If so, it then ignores any duplicates it receives
for the ack, otherwise it acts on them in accordance with the
usual fast retransmission mechanism.

3.2 Packet replication

In this section we look atpacket replication: the network
delivering multiple copies of the same packet. Unlike re-
ordering, it is difficult to see how replication can occur. Our
imaginations notwithstanding, it does happen, albeit rarely.
We suspect one mechanism may involve links whose link-
level technology includes a notion of retransmission, and
for which the sender of a packet on the link incorrectly be-
lieves the packet was not successfully received, so it sends
the packet again.3

In N1, we observed only once instance of packet replica-
tion, in which a pair of acks, sent once, arrived 9 times, each
copy coming 32 msec after the last. The fact that two pack-
ets were together replicated does not fit with the explanation
offered above for how a single packet could be replicated,
since link-layer effects should only replicate one packet at a
time. InN2, we observed 65 instances of the network in-
frastructure replicating a packet, all of a single packet, the
most striking being 23 copies of a data packet arriving in a
short blur at the receiver. Several sites dominated theN2
replication events: in particular, the two Trondheim sites,
“sintef1” and “sintef2”, accounted for half of the events
(almost all of these involvingsintef1), and the two British
sites, “ucl” and “ukc”, for half the remainder. After elimi-3We have observed traces (not part of this study) in which morethan
10% of the packets were replicated. The problem was traced toan improp-
erly configured bridging device.
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nating these, we still observed replication events among con-
nections between 7 different sites, so the effect is somewhat
widespread.

Surprisingly, packets can also be replicated at the sender,
before the network has had much of a chance to perturb them.
We know these are true replications and not packet filter du-
plications, as discussed in [Pa97a], because the copies have
had their TTL fields decremented. There were no sender-
replicated packets inN1, but 17 instances inN2, involving
two sites (so the phenomenon is clearly site-specific).

3.3 Packet corruption

The final pathology we look at ispacket corruption, in which
the network delivers to the receiver an imperfect copy of the
original packet. For data packets,tcpanaly cannot directly
verify the checksum because the packet filter used in our
study only recorded the packet headers, and not the payload.
(For “pure acks,” i.e., acknowledgement packets with no data
payload, it directly verifies the checksum.) Consequently,
tcpanaly includes algorithms to infer whether data packets
arrive with invalid checksums, discussed in [Pa97a]. Using
that analysis, we first found that one site, “lbli,” was much
more prone to checksum errors than any other. Sincelbli's
Internet link is via an ISDN link, it appears quite likely that
these are due to noise on the ISDN channels.

After eliminatinglbli, the proportion of corrupted pack-
ets is about 0.02% in both datasets. No other single site
strongly dominated in suffering from corrupted packets, and
in N2, most of the sites receiving corrupted packets had fast
(T1 or greater) Internet connectivity, so the corruptions are
not primarily due to noisy, slow links. Thus, this evidence
suggests that, as a rule of thumb, the proportion of Internet
data packets corrupted in transit is around 1 in 5,000 (but see
below).

A corruption rate of 1 packet in 5,000 is certainly not neg-
ligible, because TCP protects its data with a 16-bit check-
sum. Consequently, on average one bad packet out of 65,536
will be erroneously accepted by the receiving TCP, resulting
in undetected data corruption. If the 1 in 5,000 rate is indeed
correct, then about one in every 300 million Internet packets
is accepted with corruption—certainly, many each day. In
this case, we argue that TCP's 16-bit checksum is no longer
adequate, if the goal is that globally in the Internet there are
very few corrupted packets accepted by TCP implementa-
tions. If the checksum were instead 32 bits, then only about
one in2 � 1013 packets would be accepted with corruption.

Finally, we note that the data checksum error rate of 0.02%
of the packets is much higher than that measured directly (by
verifying the checksum) for pure acks. For pure acks, we
found only 1 corruption out of 300,000 acks inN1, and, af-
ter eliminatinglbli, 1 out of 1.6 million acks inN2. This
discrepancy can be partially addressed by accounting for the
different lengths of data packets versus pure acks. It can be
further reconciled if “header compression” such as CSLIP
is used along the Internet paths in our study [Ja90], as that

would greatly increase the relative size of data packets to that
of pure acks. But it seems unlikely that header compression
is widely used for high-speed links, and most of the inferredN2 data packet corruptions occurred for T1 and faster net-
work paths.

One possibility is that the packets inferred bytcpanaly
infer as arriving corrupted—because the receiving TCP did
not respond to them in any fashion—actually were never re-
ceived by the TCP for a different reason, such as inadequate
buffer space. We partially tested for this possibility by com-
puting corruption rates for only those traces monitored by a
packet filter running on machine separate from the receiver
(but on the same local network), versus those running on the
receiver's machine. The former resulted in slightly higher
inferred corruption rates, but not significantly so, so if the
TCP is failing to receive the packets in question, it must be
due to a mechanism that still enables the packet filter on the
receiving machine to receive a copy. One can imagine such
mechanisms, but it seems unlikely they would lead to drop
rates of 1 in 5,000.

Another possibility is that data packets are indeed much
more likely to be corrupted than the small pure ack packets,
because of some artifact in how the corruption occurs. For
example, it may be that corruption primarily occursinside
routers, where it goes undetected by any link-layer check-
sum, and that the mechanism (e.g., botched DMA, cache in-
consistencies) only manifests itself for packets larger than a
particular size.

Finally, we note that bit errors in packets transmitted us-
ing CSLIP can result in surprising artifacts when the CSLIP
receiver reconstructs the packet header—such as introducing
the appearance of in-sequence data, when none was actually
sent!

In summary, we cannot offer a definitive answer as to over-
all Internet packet corruption rates: but the conflicting evi-
dence that corruption may occur fairly frequently argues for
further study in order to resolve the question.

4 Bottleneck Bandwidth

In this section we discuss how to estimate a fundamental
property of a network connection, thebottleneck bandwidth
that sets the upper limit on how quickly the network can de-
liver the sender's data to the receiver. The bottleneck comes
from the slowest forwarding element in the end-to-end chain
that comprises the network path. We make a crucial distinc-
tion betweenbottleneckbandwidth andavailablebandwidth.
The former gives an upper bound on how fast a connection
canpossiblytransmit data, while the less-well-defined latter
term denotes how fast the connectionshouldtransmit to pre-
serve network stability. Thus, available bandwidth never ex-
ceeds bottleneck bandwidth, and can in fact be much smaller
(x 6.3).

We will denote a path's bottleneck bandwidth as�B . For
measurement analysis,�B is a fundamental quantity be-
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cause it determines what we term theself-interference time-
constant, Qb. Qb measures the amount of time required to
forward a given packet through the bottleneck element. If a
packet carries a total ofb bytes and the bottleneck bandwidth
is �B byte/sec, then: Qb = b�B ; (1)

in units of seconds. From a queueing theory perspective,Qb is simply the service time of ab-byte packet at the bot-
tleneck link. We use the term “self-interference” because
if the sender transmits twob-byte packets with an interval�Ts < Qb between them, then the second one is guaranteed
to have to wait behind the first one at the bottleneck element
(hence the use of “Q” to denote “queueing”). We will al-
ways discussQb in terms ofuser data bytes, i.e., TCP packet
payload, and for ease of discussion will assumeb is constant.
We will not use the term for acks.

For our measurement analysis, accurate assessment ofQb
is critical. Suppose we observe a sender transmitting pack-
etsp1 andp2 an interval�Ts apart. Then if�Ts < Qb, the
delays experienced byp1 andp2 areperforce correlated, and
if �Ts � Qb their delays, if correlated, are not due to self-
interference but some other source (such as additional traf-
fic from other connections, or processing delays). Thus, we
need to knowQb so we can distinguish those measurements
that are necessarily correlated from those that are not. If we
do not do so, then we will skew our analysis by mixing to-
gether measurements with built-in delays (due to queueing at
the bottleneck) with measurements that do not reflect built-in
delays.

4.1 Packet pair

The bottleneck estimation technique used in previous work
is based on “packet pair” [Ke91, Bo93, CC96]. The fun-
damental idea is that if two packets are transmitted by the
sender with an interval�Ts < Qb between them, then when
they arrive at the bottleneck they will be spread out in time
by the transmission delay of the first packet across the bottle-
neck: after completing transmission through the bottleneck,
their spacing will be exactlyQb. Barring subsequent delay
variations, they will then arrive at the receiver spaced not�Ts apart, but�Tr = Qb. We then compute�B via Eqn 1.

The principle of the bottleneck spacing effect was noted in
Jacobson's classic congestion paper [Ja88], where it in turn
leads to the “self-clocking” mechanism. Keshav formally
analyzed the behavior of packet pair for a network of routers
that all obey the “fair queueing” scheduling discipline (not
presently used in the Internet), and developed a provably sta-
ble flow control scheme based on packet pair measurements
[Ke91]. Both Jacobson and Keshav were interested in esti-
matingavailablerather thanbottleneckbandwidth, and for
thisvariationsfromQb due to queueing are of primary con-
cern (x 6.3). But if, as for us, the goal is to estimate�B , then
these variations instead become noise we must deal with.

Bolot used a stream of packets sent at fixed intervals to
probe several Internet paths in order to characterize delay
and loss [Bo93]. He measured round-trip delay of UDP echo
packets and, among other analysis, applied the packet pair
technique to form estimates of bottleneck bandwidths. He
found good agreement with known link capacities, though a
limitation of his study is that the measurements were con-
fined to a small number of Internet paths.

Recent work by Carter and Crovella also investigates the
utility of using packet pair in the Internet for estimating�B
[CC96]. Their work focusses onbprobe, a tool they devised
for estimating�B by transmitting 10 consecutive ICMP echo
packets and recording the interarrival times of the consecu-
tive replies. Much of the effort in developingbprobe con-
cerns how to filter the resulting raw measurements in order
to form a solid estimate.bprobe currently filters by first
widening each estimate into an interval by adding an error
term, and then finding the point at which the most intervals
overlap. The authors also undertook to calibratebprobe by
testing its performance for a number of Internet paths with
known bottlenecks. They found in general it works well,
though some paths exhibited sufficient noise to sometimes
produce erroneous estimates.

One limitation of both studies is that they were based on
measurements made only at the data sender. (This is not an
intrinsic limitation of the techniques used in either study).
Since in both studies, the packets echoed back from the re-
mote end were the same size as those sent to it, neither anal-
ysis was able to distinguish whether the bottleneck along
the forward and reverse paths was the same. The bottleneck
could differ in the two directions due to asymmetric routing,
for example [Pa96], or because some media, such as satellite
links, can have significant bandwidth asymmetries depend-
ing on the direction traversed [DMT96].

For estimating bottleneck bandwidth by measuring TCP
traffic, a second problem arises: if the only measurements
available are those at the sender, then “ack compression”
(x 6.1) can significantly alter the spacing of the small ack
packets as they return through the network, distorting the
bandwidth estimate. We investigate the degree of this prob-
lem below.

For our analysis, we consider what we termreceiver-based
packet pair (RBPP), in which we look at the pattern of data
packet arrivals at the receiver. We also assume that the re-
ceiver has full timing information available to it. In partic-
ular, we assume that the receiver knows when the packets
sent werenot stretched out by the network, and can reject
these as candidates for RBPP analysis. RBPP is considerably
more accurate than sender-based packet pair (SBPP), since it
eliminates the additional noise and possible asymmetry of
the return path, as well as noise due to delays in generating
the acks themselves. We find in practice this additional noise
can be quite large.
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Figure 2: Bottleneck bandwidth change

4.2 Difficulties with packet pair

As shown in [Bo93] and [CC96], packet pair techniques of-
ten provide good estimates of bottleneck bandwidth. We
find, however, four potential problems (in addition to noise
on the return path for SBPP). Three of these problem can
often be addressed, but the fourth is more fundamental.

Out-of-order delivery. The first problem stems from the
fact that for some Internet paths, out-of-orderpacket delivery
occurs quite frequently (x 3.1). Clearly, packet pairs deliv-
ered out of order completely destroy the packet pair tech-
nique, since they result in�Tr < 0, which then leads to
a negative estimate for�B . Out-of-order delivery is symp-
tomatic of a more general problem, namely that the two
packets in a pair may not take the same route through the
network, which then violates the assumption that the second
queues behind the first at the bottleneck.

Limitations due to clock resolution. Another problem
relates to the receiver's clock resolution,Cr, meaning the
minimum difference in time the clock can report.Cr can
introduce large margins of error around estimates of�B . For
example, ifCr = 10 msec, then forb = 512 bytes, packet
pair cannot distinguish between�B = 51,200 byte/sec, and�B =1.

We had several sites in our study withCr = 10 msec. A
technique for coping with largeCr is to use packetbunch, in
whichk � 2 back-to-back packets are used, rather than just
two. Thus, the overall arrival interval�T kr spanned by thek
packets will be aboutk�1 times larger than that spanned by
a single packet pair, diminishing the uncertainty due toCr.

Changes in bottleneck bandwidth. Another problem
that anybottleneck bandwidth estimation must deal with is
the possibility that the bottleneckchangesover the course
of the connection. Figure 2 shows a sequence plot of data
packets arriving at the receiver for a trace in which this
happened. The eye immediately picks out a transition be-
tween one overall slope to another, just afterT = 6. The
first slope corresponds to 6,600 byte/sec, while the second is
13,300 byte/sec, and increase of a factor of two. Here, the
change is due tolbli's ISDN link activating a secondchan-
nel to double the link bandwidth, but in general bottleneck
shifts can occur due to other mechanisms, such as routing
changes.
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Figure 3: Enlargement of part of previous figure's right half

Multi-channel bottleneck links. A more fundamental
problem with packet-pair techniques arises from the effects
of multi-channellinks, for which packet pair can yieldin-
correct overestimateseven in the absence of any delay noise.
Figure 3 expands a portion of Figure 2. The slope of the
large linear trend in the plot corresponds to 13,300 byte/sec,
as earlier noted. However, we see that the line is actually
made up of pairs of packets. The slope between the pairs
corresponds to a data rate of 160 Kbyte/sec. However, this
trace involvedlbli, a site with an ISDN link that has a hard
limit of 128 Kbit/sec = 16 Kbyte/sec, a factor of ten smaller!
Clearly, an estimate of�B � 160 Kbyte/sec must be wrong,
yet that is what a packet-pair calculation will yield.

What has happened is that the bottleneck ISDN link uses
two channelsthat operate inparallel. When the link is idle
and a packet arrives, it goes out over the first channel, and
when another packet arrives shortly after, it goes out over
the other channel. They don' t queue behind each other!
Multi-channel links violate the assumption that there is asin-
gle end-to-end forwarding path, with disastrous results for
packet-pair, since in their presence it can form completely
misleading overestimates for�B .

We stress that the problem is more general than the cir-
cumstances shown in this example. First, while in this ex-
ample the parallelism leading to the estimation error came
from a single link with two separate physical channels, the
exact same effect could come from a router that balances
its outgoing load across two different links. Second, it may
be tempting to dismiss this problem as correctable by using
packet bunch withk = 3 instead of packet pair. This argu-
ment is not compelling without further investigation, how-
ever, because packet bunch could be more prone to error for
regular bottlenecks; and, more fundamentally,k = 3 only
works if the parallelism comes fromtwochannels. If it came
from threechannels (or load-balancing links), thenk = 3
will still yield misleading estimates.

4.3 Robust bottleneck estimation

Motivated by the shortcomings of packet pair, we developed
a significantly more robust procedure, “packet bunch modes”
(PBM). The main observation behind PBM is that we can
deal with packet-pair's shortcomings by forming estimates
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for a rangeof packet bunch sizes, and by allowing formul-
tiple bottleneck values or apparent bottleneck values. By
considering different bunch sizes, we can accommodate lim-
ited receiver clock resolutions and the possibility of multiple
channels or load-balancing across multiple links, while still
avoiding the risk of underestimation due to noise diluting
larger bunches, since we also consider small bunch sizes. By
allowing for finding multiple bottleneck values, we again ac-
commodate multi-channel (and multi-link) effects, and also
the possibility of a bottleneckchange.

Allowing for multiple bottleneck values rules out use of
the most common robust estimator, the median, since it
presupposes unimodality. We instead focus on identifying
modes, i.e., local maxima in the density function of the dis-
tribution of the estimates. We then observe that:

(i) If we find two strong modes, for which one is found
only at the beginning of the connection and one at the
end, then we have evidence of a bottleneckchange.

(ii) If we find two strong modes which span the same por-
tion of the connection, and if one is found only for a
packet bunch size ofm and the other only for bunch
sizes> m, then we have evidence for anm-channel
bottleneck link.

(iii) We can find both situations, for a link that exhibits both
a change and a multi-channel link, such as shown in
Figure 2.

Turning these observations into a working algorithm entails a
great degree of niggling detail, as well as the use of a number
of heuristics. Due to space limitations, we defer the partic-
ulars to [Pa97b]. We note, though, that one salient aspect
of PBM is that it forms its final estimates in terms oferror
barsthat nominally encompass�20% around the bottleneck
estimate, but might be narrower if estimates cluster sharply
around a particular value, or wider if limited clock resolution
prevents finer bounds. PBM always tries bunch sizes ranging
from two packets to five packets. If required by limited clock
resolution or the failure to find a compelling bandwidth es-
timate (about one quarter of all of the traces, usually due to
limited clock resolution), it tries progressively larger bunch
sizes, up to a maximum of 21 packets. We also note that
nothing in PBM is specific to analyzing TCP traffic. All it
requires is knowing when packets were sent relative to one
another, how they arrived relative to one another, and their
size.

We applied PBM toN1 andN2 for those traces for which
tcpanaly's packet filter and clock analysis did not uncover
any uncorrectable problems [Pa97a, Pa97b]. After removing
lbli, which frequently exhibited both bottleneck changes
and multi-channel effects, PBM detected a single bottleneck
95–98% of the time; failed to produce an estimate 0-2% of
the time (due to excessive noise or reordering); detected a
bottleneck change in about 1 connection out of 250; and in-
ferred a multi-channel bottleneck in 1-2% of the connections
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Figure 4: Histogram of single-bottleneck estimates forN2
(though some of these appear spurious). Since all but sin-
gle bottlenecks are rare, we defer discussion of the others to
[Pa97b], and focus here on the usual case of finding a single
bottleneck.

Unlike [CC96], we do not knowa priori the bottleneck
bandwidths for many of the paths in our study. We thus must
fall back on self-consistency checks in order to gauge the ac-
curacy of PBM. Figure 4 shows a histogram of the estimates
formed forN2. (TheN1 estimates are similar, though lower
bandwidth estimates are more common.) The 170 Kbyte/sec
peak clearly dominates, and corresponds to the speed of a
T1 circuit after removing overhead.4. The 7.5 Kbyte/sec
corresponds to 64 Kbit/sec links and the 13–14 Kbyte/sec
peak reflects 128 Kbit/sec links. The 30 Kbyte/sec peak
corresponds to a 256 Kbit/sec link, seen almost exclusively
for connections involving a U.K. site. The 1 Mbyte/sec
peaks are due to Ethernet bottlenecks, and likely reflect T3-
connectivity beyond the limiting Ethernet.

We speculate that the 330 Kbyte/sec peak reflects use
of two T1 circuits in parallel, 500 Kbyte/sec reflects three
T1 circuits (not half an Ethernet, since there is no easy way to
subdivide an Ethernet's bandwidth), and 80 Kbyte/sec comes
from use of half of a T1. Similarly, the 100 Kbyte/sec peak
most likely is due to splitting a single E1 circuit in half. In-
deed, we find non-North American sites predominating these
connections, as well exhibiting peaks at 200–220 Kbyte/sec,
above the T1 rate and just a bit below E1. This peak is absent
from North American connections.

In summary, we believe we can offer plausible explana-
tions for all of the peaks. Passing this self-consistency test
in turn argues that PBM is indeed detecting true bottleneck
bandwidths.

We next investigate the stability of bottleneck bandwidth
over time. If we consider successive estimates for the same
sender/receiver pair, then we find that 50% differ by less than
1.75%; 80%, by less than 10%; and 98% differ by less than
a factor of two. Clearly, bottlenecks change infrequently.

The last property of bottleneck bandwidth we investigate
is symmetry: how often is the bottleneck from hostA to hostB the same as that fromB to A? Bottleneck asymmetries
are an important consideration for sender-based “echo” mea-
surement techniques, since these will observe theminimum4Recall that we compute�B in terms of TCPpayloadbytes.
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bottleneck of the two directions [Bo93, CC96]. We find that
for a given pair of hosts, the median estimates in the two di-
rections differ by more than� 20% about 20% of the time.
This finding agrees with the observation that Internet paths
often exhibit major routing asymmetries [Pa96]. The bottle-
neck differences can be quite large, with for example some
paths T1-limited in one direction but Ethernet-limited in the
other. In light of these variations, we see that sender-based
bottleneck measurement will sometimes yield quite inaccu-
rate results.

4.4 Efficacy of packet-pair

We finish with a look at how packet pair performs compared
to PBM. We confine our analysis to those traces for which
PBM found a single bottleneck. If packet pair produces an
estimate lying within� 20% of PBM's, then we consider it
agreeing with PBM, otherwise not.

We evaluate “receiver-based packet pair” (RBPP, perx 4.1) by considering it as PBM limited to packet bunch
sizes of 2 packets (or larger, if needed to resolve limited
clock resolutions). We find RBPP estimates almost always
(97–98%) agree with PBM. Thus, if (1) PBM's general clus-
tering and filtering algorithms are applied to packet pair, (2)
we do packet pair estimation at thereceiver, (3) the receiver
benefits from sender timing information, so it can reliably
detect out-of-order delivery and lack of bottleneck “expan-
sion,” and (4) we are not concerned with multi-channel ef-
fects, then packet pair is a viable and relatively simple means
to estimate the bottleneck bandwidth.

We also evaluate “sender-based packet pair” (SBPP), in
which the sender makes measurements by itself. SBPP is
of considerable interest because a sender can use it with-
out any cooperation from the receiver, making it easy to de-
ploy in the Internet. To fairly evaluate SBPP, we assume
use by the sender of a number of considerations for forming
sound bandwidth estimates, detailed in [Pa97b]. Even so,
we find, unfortunately, that SBPP does not work especially
well. In both datasets, the SBPP bottleneck estimate agrees
with PBM only about 60% of the time. About one third of
the estimates are too low, reflecting inaccuracies induced by
excessive delays incurred by the acks on their return. The
remaining 5–6% are overestimates (typically 50% too high),
reflecting ack compression (x 6.1).

5 Packet Loss

In this section we look at what our measurements tell us
about packet loss in the Internet: how frequently it occurs
and with what general patterns (x 5.1); differences between
loss rates of data packets and acks (x 5.2); the degree to
which loss occurs in bursts (x 5.3); and how well TCP re-
transmission matches genuine loss (x 5.4).

5.1 Loss rates

A fundamental issue in measuring packet loss is to avoid
confusing measurement drops with genuine losses. Here is
where the effort to ensure thattcpanaly understands the
details of the TCP implementations in our study pays off
[Pa97a]. Because we can determine whether traces suffer
from measurement drops, we can exclude those that do from
our packet loss analysis and avoid what could otherwise be
significant inaccuracies.

For the sites in common, inN1, 2.7% of the packets were
lost, while inN2, 5.2%, nearly twice as many. However,
we need to address the question of whether the increase was
due to the use of bigger windows inN2 (x 2). With bigger
windows, transfers will often have more data in flight and,
consequently, load router queues much more.

We can assess the impact of bigger windows by looking at
loss rates ofdatapackets versus those forackpackets. Data
packets stress the forward path much more than the smaller
ack packets stress the reverse path, especially since acks are
usually sent at half the rate of data packets due to ack-every-
other-packet policies. On the other hand, the rate at which
a TCP transmits data packetsadaptsto current conditions,
while the ack transmission rate does not unless an entire
flight of acks is lost, causing a sender timeout. Thus, we
argue that ack losses give a clearer picture of overall Internet
loss patterns, while data losses tell us specifically about the
conditions as perceived by TCP connections.

In N1, 2.88% of the acks were lost and 2.65% of the
data packets, while inN2 the figures are 5.14% and 5.28%.
Clearly, the bulk of the difference between theN1 andN2
loss rates is not due to the use of bigger windows inN2.
Thus we conclude that, overall, packet loss rates nearly dou-
bled during 1995. We can refine these figures in a significant
way, by conditioning on observing at least one loss during a
connection. Here we make a tacit assumption that the net-
work has two states, “quiescent” and “busy,” and that we can
distinguish between the two because when it is quiescent, we
do not observeany(ack) loss.

In bothN1 andN2, about half the connections had no ack
loss. For “busy” connections, the loss rates jump to 5.7% inN1 and 9.2% inN2. Thus, even inN1, if the network was
busy (using our simplistic definition above), loss rates were
quite high, and forN2 they shot upward to a level that in
general will seriously impede TCP performance.

So far, we have treated the Internet as a single aggre-
gated network in our loss analysis. Geography, however,
plays a crucial role. To study geographic effects, we par-
tition the connections into four groups: “Europe,” “U.S.,”
“Into Europe,” and “Into U.S.” European connections have
both a European sender and receiver, U.S. have both in the
United States. “Into Europe” connections have European
datasendersand U.S. datareceivers. The terminology is
backwards here because what we assess areack loss rates,
and these are generated by the receiver. Hence, “Into Eu-
rope” loss rates reflect those experienced by packet streams
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Region Quies1 Quies2 Busy1 Busy2 �
Europe 48% 58% 5.3% 5.9% +11%
U.S. 66% 69% 3.6% 4.4% +21%
Into Europe 40% 31% 9.8% 16.9% +73%
Into U.S. 35% 52% 4.9% 6.0% +22%
All regions 53% 52% 5.6% 8.7% +54%

Table 1: Conditional ack loss rates for different regions

traveling from the U.S. into Europe. Similarly, “Into U.S.”
are connections with U.S. data senders and European re-
ceivers.

Table 1 summarizes loss rates for the different regions,
conditioning on whether any acks were lost (“quiescent” or
“busy”). The second and third columns give the proportion
of all connections that were quiescent inN1 andN2, respec-
tively. We see that except for the trans-Atlantic links go-
ing into the U.S., the proportion of quiescent connections is
fairly stable. Hence, loss rate increases are primarily due to
higher loss rates during the already-loaded “busy” periods.
The fourth and fifth columns give the proportion of acks lost
for “busy” periods, and the final column summarizes the rel-
ative change of these figures. None of the busy loss rates is
especially heartening, and the trends areall increasing. The
17%N2 loss rate going into Europe is particularly glum.

Within regions, we find considerable site-to-site variation
in loss rates, as well as variation between loss rates for pack-
ets inbound to the site and those outbound (x 5.2). We did
not, however, find any sites that seriously skewed the above
figures.

In [Pa97b] we also analyze loss rates over the course of
the day, here omitted due to limited space. We find an un-
surprising diurnal pattern of “busy” periods corresponding to
working hours and “quiescent” periods to late night and es-
pecially early morning hours. However, we also find that our
successfulmeasurements involving European sites exhibit a
definite skew towards oversampling the quiescent periods,
due to effects discussed inx 2. Consequently, the European
loss rates given above areunderestimates.

We finish with a brief look at how loss rates evolve over
time. We find that observing a zero-loss connection at a
given point in time is quite a good predictor of observing
zero-loss connections up to several hours in the future, and
remains a useful predictor, though not as strong, even for
time scales of days and weeks [Pa97b]. Similarly, observing
a connection that suffered loss is also a good predictor that
future connections will suffer loss. The fact that prediction
loses some power after a few hours supports the notion devel-
oped above that network paths have two general states, “qui-
escent” and “busy,” and provides evidence that both states
are long-lived, on time scales of hours. This again is not
surprising, since we discussed earlier how these states ex-
hibit clear diurnal patterns. That they are long-lived, though,
means that caching loss information should prove beneficial.

Finally, we note that the predictive power of observing a

specific lossrate is much lower than that of observing the
presence of zero or non-zero loss. That is, even if we know
it is a “busy” or a “quiescent” period, the loss rate measured
at a given time only somewhat helps us predict loss rates at
times not very far (minutes) in the future, and is of little help
in predicting loss rates a number of hours in the future.

5.2 Data packet loss vs. ack loss

We now turn to evaluating how patterns of packet loss dif-
fer among data packets (those carrying any user data) and
ack packets. We make a key distinction between “loaded”
and “unloaded” data packets. A “loaded” data packet is one
that presumably had to queue at the bottleneck link behind
one of the connection's previous packets, while an unloaded
data packet is one that we know did not have to queue at the
bottleneck behind a predecessor. We distinguish between the
two by computing each packet'sload, as follows.

Suppose the methodology inx 4 estimates the bottleneck
bandwidth as�B . It also providesboundson the estimate,
i.e., a minimum value��B and a maximum�+B . We can then
determine the maximum amount of time required for ab-byte
packet to transit the bottleneck, namely:�+b = b=��B sec.

Let T si be the time at which the sender transmits theith
data packet. We then sequentially associate amaximum load�+i with each packet (assume for simplicity thatb is con-
stant). The first packet's load is:�+1 = �+b :
Subsequent packets have a load:�+i = �+b +max �(T si�1 + �+i�1)� T si ; 0� :�+i thus reflects the maximum amount of extra delay theith
packet incurs due to its own transmission time across the
bottleneck link, plus the time required to first transmit any
preceding packets across the bottleneck link, ifi will ar-
rive at the bottleneck before they completed transmission.
In queueing theory terms,�+i reflects theith packet's (max-
imum) waiting time at the bottleneck queue, in the absence
of competing traffic from exogenous sources.

If T si < T si�1+�+i�1, then we will term packeti “loaded,”
meaning that it had to wait for pending transmission of ear-
lier packets. Otherwise, we term it “unloaded.” (We can also
develop “central” estimates rather than maximum estimates
using�B instead of��B in this chain of reasoning. These are
the values used inx 6.3.)

Using this terminology, in bothN1 andN2, about 2/3's
of the data packets were loaded. Figure 5 shows the distri-
butions of loss rates duringN2 for unloaded data packets,
loaded data packets, and acks. All three distributions show
considerable probability of zero loss. We immediately see
that loaded packets are much more likely to be lost than un-
loaded packets, as we would expect. In addition, acks are
consistently more likely than unloaded packets to be lost, but
generally less likely to be lost than loaded packets, except
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Figure 5:N2 loss rates for data packets and acks

during times of severe loss. We interpret the difference be-
tween ack and data loss rates as reflecting the fact that, while
an ack stream presents a much lighter load to the network
than a data packet stream, the ack stream doesnot adapt to
the current network conditions, while the data packet stream
does, lowering its transmission rate in an attempt to diminish
its loss rate.

It is interesting to note the extremes to which packet loss
can reach. InN2, the largest unloaded data packet loss rate
we observed was 47%. For loaded packets it climbed to 65%,
and for acks, 68%. As we would expect, these connec-
tions all suffered egregiously. However, theydid manage to
successfully complete their transfers within their alloted ten
minutes, a testimony to TCP's tenacity. For all of these ex-
tremes,nopackets were lost in the reverse direction! Clearly
packet loss on the forward and reverse paths is sometimes
completely independent. Indeed, the coefficient of correla-
tion between combined (loaded and unloaded) data packet
loss rates and ack loss rates inN1 is 0.21, and inN2, the loss
rates appear uncorrelated (coefficient of�0.02), perhaps due
to the greater prevalence of significant routing asymmetry
[Pa96].

Further investigating the loss rate distributions, one inter-
esting feature we find is that the non-zero portions of both
the unloaded and loaded data packet loss rates agree closely
with exponential distributions, while that for acks is not so
persuasive a match. Figure 6 shows the distributions of the
per-connection loss rates for unloaded data packets (top) and
acks (bottom) inN2, for those connections that suffered at
least one loss. In both plots we have added an exponen-
tial distribution fitted to the mean of the loss rate (dotted).
We see that for unloaded data packets (and also for loaded
packets, not shown), the loss rate distribution is quite close
to exponential, with the only significant disagreement in the
lower tail. (This tail is subject to granularity effects, since
for a trace withp packets, the minimum non-zero loss rate
will be 1p .) The close fit is widespread—not dominated by a
few sites. For ack loss rates, however, we see that the fit is
considerably less compelling.

While striking, interpreting the fit to the exponential dis-
tribution is difficult. If, for example, packet loss occurs in-
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Figure 6: Distribution ofN2 unloaded data packet and ack
non-zero loss rates (solid), with fitted exponential distribu-
tions (dotted)

dependently and with a constant probability, then we would
expect the loss rate to reflect a binomial distribution, but that
is not what we observe. (We also know from the results inx 5.1 that there isnot a single Internet packet loss rate, or
anything approaching such a situation.)

It seems likely that the better exponential fit for data loss
rates than ack loss rates holds a clue. The most salient dif-
ference between the transmission of data packets and that of
acks is that the rate at which the sender transmits data pack-
etsadaptsto the current network conditions, and furthermore
it adaptsbased on observing data packet loss. Thus, if we
passively measure the loss rate by observing the fate of a
connection's TCP data packets, then we in fact are making
measurements using a mechanism whose goal is to lower the
value of what we are measuring (by spacing out the measure-
ments). Consequently, we need to take care to distinguish
between measuring overall Internet packet loss rates, which
is best done usingnon-adaptivesampling, versus measuring
loss ratesexperiencedby a transport connection's packets—
the two can be quite different.

Finally: the link between the adaptive sampling and the
striking exponential distribution eludes us. We suspect it will
prove an interesting area for further study.
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Type of loss Pul P clN1 N2 N1 N2
Loaded data pkt 2.8% 4.5% 49% 50%
Unloaded data pkt 3.3% 5.3% 20% 25%
Ack 3.2% 4.3% 25% 31%

Table 2: Unconditional and conditional loss rates

5.3 Loss bursts

In this section we look at the degree to which packet loss
occurs inburstsof more than one consecutive loss.

The first question we address is the degree to which packet
losses are well-modeled as independent. In [Bo93], Bolot in-
vestigated this question by comparing the unconditional loss
probability, P ul , with the conditional loss probability,P cl ,
whereP cl is conditioned on the fact that the previous packet
was also lost. He investigated the relationship betweenP ul
andP cl for different packet spacings�, ranging from 8 msec
to 500 msec. He found thatP cl approachesP ul as � in-
creases, indicating that loss correlations are short-lived, and
concluded that “losses of probe packets are essentially ran-
dom as long as the probe traffic uses less than 10% of the
available capacity of the connection over which the probes
are sent.” The path he analyzed, though, included a heavily
loaded trans-Atlantic link, so the patterns he observed might
not be typical.

Table 2 summarizesP ul andP cl for the different types
of packets and the two datasets. Clearly, for TCP packets
we must discard the assumption that loss events are well-
modeled as independent. Even for the low-burden, relatively
low-rate ack packets, the loss probability jumps by a factor of
seven if the previous ack was lost. We would expect to find
the disparity strongest for loaded data packets, as these must
contend for buffer with the connection's own previous pack-
ets, as well as any additional traffic, and indeed this is the
case. We find the effect least strong for unloaded data pack-
ets, which accords with these not having to contend with the
connection's previous packets, and having their rate dimin-
ished in the face of previous loss.5

The relative differences betweenP ul andP cl in Table 2 all
exceed those computed by Bolot by a large factor. His great-
est observed ratio ofP cl to P ul was about 2.5:1. However,
hisP ul were all much higher than those in Table 2, even for� = 500msec, suggesting that the path he measured differed
considerably from a typical path in our study.

Given that packet losses occur in bursts, the next natural
question is: how big? To address this question, we group
successive packet losses intooutages. Figure 7 shows the
distribution of outage durations for those lasting more than5It is interesting that loaded packets are unconditionally less likely to be
lost than unloaded packets. We suspect this reflects the factthat lengthy
periods of heavy loss or outages will lead to timeout retransmissions, and
these are unloaded. Note that these statistics differ from the distributions
shown in Figure 5 because those are forper-connectionloss rates, while
Table 2 summarizes loss probabilities overall the packetsin each dataset.
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Figure 7: Distribution of packet loss outage durations ex-
ceeding 200 msec
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200 msec (the majority). We see that all four distributions
agree fairly closely.

It is clear from Figure 7 that outage durations span several
orders of magnitude. For example, 10% of theN2 ack out-
ages were 33 msec or shorter (not shown in the plot), while
another 10% were 3.2 sec or longer, a factor of a hundred
larger. Furthermore, the upper tail of the distributions are
consistent with Pareto distributions. Figure 8 shows a com-
plementary distribution plot of the duration ofN2 ack out-
ages, for those lasting more than 2 sec (about 16% of all the
outages). Both axes are log-scaled. A straight line on such
a plot corresponds to a Pareto distribution. We have added
a least-squares fit. We see the long outages fit quite well to
a Pareto distribution with shape parameter� = 1:06, except
for the extreme upper tail, which is subject to truncation be-
cause of the 600 sec limit on connection durations (x 2).

A shape parameter� � 2 means that the distribution has
infinite variance, indicating immense variability. Pareto dis-
tributions for activity and inactivity periods play key roles in
some models of self-similar network traffic [WTSW95], sug-
gesting that packet loss outages could contribute to how TCP
network traffic might fit to ON/OFF-based self-similarity
models.

Finally, we note that the patterns of loss bursts we ob-
serve might be greatly shaped by use of “drop tail” queueing.
In particular, deployment of Random Early Detection could
significantly affect these patterns and the corresponding con-
nection dynamics [FJ93].
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Type of RR Solaris1 Solaris2 Other1 Other2
% all packets 6% 6% 1% 2%
% retrans. 66% 59% 26% 28%
Unavoidable 14% 33% 44% 17%
Coarse feed. 1% 1% 51% 80%
Bad RTO 84% 66% 4% 3%

Table 3: Proportion of redundant retransmissions (RRs) due
to different causes

5.4 Efficacy of TCP retransmission

The final aspect of packet loss we investigate is how effi-
ciently TCP deals with it. Ideally, TCP retransmits if and
only if the retransmitted data was indeed lost. However,
the transmitting TCP lacks perfect information, and conse-
quently can retransmit unnecessarily. We analyzed each TCP
transmission in our measurements to determine whether it
was aredundant retransmission(RR), meaning that the data
sent had already arrived at the receiver, or was in flight and
would successfully arrive. We classify three types of RRs:

unavoidable because all of the acks for the data were lost;

coarse feedbackmeaning that had earlier acks conveyed
finer information about sequence holes (such as pro-
vided by SACK), then the retransmission could have
been avoided; and

bad RTO meaning that had the TCP simply waited longer,
it would have received an ack for the data (bad retrans-
mission timeout).

Table 3 summarizes the prevalence of the different types
of RRs inN1 andN2. We divide the analysis into So-
laris 2.3/2.4 TCP senders and others because in [Pa97a] we
identified the Solaris 2.3/2.4 TCP as suffering from signifi-
cant errors in computing RTO, which the other implementa-
tions do not exhibit. We see that inN1, a fair proportion of
the RRs were unavoidable. (Some of these might however
have been avoided had the receiving TCP generated more
acks.) But forN2, only about 1/6 of the RRs for non-Solaris
TCPs were unavoidable, the difference no doubt due toN2 's
use of bigger windows (x 2) increasing the mean number of
acks in flight.

“Coarse feedback” RRs would presumably all be fixed us-
ing SACK, and these are the majority of RRs for non-Solaris
TCPs. Solaris TCPs would not immediately benefit from
SACK because many of their RRs occur before a SACK ack
could arrive, anyway.

“Bad RTO” RRs indicate that the TCP's computation of
the retransmission timeout was erroneous. These are the
bane of Solaris 2.3/2.4 TCP, as noted above. Fixing the So-
laris RTO calculation eliminates about 4-5% ofall of the data
traffic generated by the TCP.6 For non-Solaris TCPs, bad6We note that this problem has been fixed in Solaris 2.5.1.

RTO RRs are rare, providing solid evidence that the standard
TCP RTO estimation algorithm developed in [Ja88] performs
quite well for avoiding RRs. A separate question is whether
the RTO estimation is overly conservative. A thorough in-
vestigation of this question is complex because a revised esti-
mator might take advantage of both higher-resolution clocks
and the opportunity to time multiple packets per flight. Thus,
we leave this interesting question for future work.

In summary: ensuring standard-conformant RTO calcu-
lations and deploying the SACK option together eliminate
virtually all of the avoidable redundant retransmissions. The
remaining RRs are rare enough to not present serious perfor-
mance problems.

6 Packet Delay

The final aspect of Internet packet dynamics we analyze is
that of packet delay. Here we focus on network dynamics
rather than transport protocol dynamics. Consequently, we
confine our analysis to variations in one-way transit times
(OTTs) and omit discussion of RTT variation, since RTT
measurements conflate delays along the forward and reverse
path.

For reasons noted inx 1, we do not attempt frequency-
domain analysis of packet delay. We also do not summa-
rize the marginal distribution of packet delays. Mukherjee
found that packet delay along a particular Internet path is
well-modeled using a shifted gamma distribution, but the pa-
rameters of the distribution vary from path to path and over
the course of the day [Mu94]. Since we have about 1,000 dis-
tinct paths in our study, measured at all hours of the day, and
since the gamma distribution varies considerably as its pa-
rameters are varied, it is difficult to see how to summarize
the delay distributions in a useful fashion. We hope to revisit
this problem in future work.

Any accurate assessment of delay must first deal with
the issue of clock accuracy. This problem is particularly
pronounced when measuring OTTs since doing so involves
comparing measurements from two separate clocks. Accord-
ingly, we developed robust algorithms for detecting clockad-
justmentsandrelative skewby inspecting sets of OTT mea-
surements, described in [Pa97b]. The analysis in this section
assumes these algorithms have first been used to reject or
adjust traces with clock errors.

OTT variation was previously analyzed by Claffy and col-
leagues in a study of four Internet paths [CPB93]. They
found that mean OTTs are oftennot well approximated by
dividing RTTs in half, and that variations in the paths' OTTs
are often asymmetric. Our measurements confirm this lat-
ter finding. If we compute the inter-quartile range (75th per-
centile minus 25th) of OTTs for a connection's unloaded data
packets versus the acks coming back, inN1 the coefficient of
correlation between the two is an anemic 0.10, and inN2 it
drops to 0.006.
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6.1 Timing compression

Packet timingcompressionoccurs when a flight of packets
sent over an interval�Ts arrives at the receiver over an in-
terval�Tr < �Ts. To first order, compression should not
occur, since the main mechanism at work in the network for
altering the spacing between packets is queueing, which in
generalexpandsflights of packets (cf.x 4.1). However, com-
pression can occur if a flight of packets is at some pointheld
up by the network, such that transmission of the first packet
stalls and the later packets have time to catch up to it.

Zhang et al. predicted from theory and simulation that
acks could be compressed (“ack compression”) if a flight
arrived at a router without any intervening packets from
cross traffic (hence, the router's queue isdraining) [ZSC91].
Mogul subsequently analyzed a trace of Internet traffic and
confirmed the presence of ack compression [Mo92]. His def-
inition of ack compression is somewhat complex since he
had to infer endpoint behavior from an observation point in-
side the network. Since we can compute from our data both�Ts and�Tr, we can instead directly evaluate the presence
of compression. He found compression was correlated with
packet loss but considerably more rare. His study was lim-
ited, however, to a single 5-hour traffic trace.

Ack compression. To detect ack compression, for each
group of at least 3 acks we compute:� = �Tr + Cr�Ts � Cs ; (2)

whereCr andCs are the receiver and sender's clock res-
olutions, so� is a conservative estimate of the degree of
compression. We consider a group compressed if� < 0:75.
We term such a group acompression event. In N1, 50% of
the connections experienced at least one compression event,
and inN2, 60% did. In both, the mean number of events
was around 2, and 1% of the connections experienced 15 or
more. Almost all compression events are small, with only
5% spanning five or more acks. Finally, a significant mi-
nority (10–25%) of the compression events occurred for dup
acks. These are sent with less spacing between them than
regular acks sent by ack-every-other policies, so it takes less
timing perturbation to compress them.

Were ack compression frequent, it would present two
problems. First, as acks arrive they advance TCP's sliding
window and “clock out” new data packets at the rate re-
flected by their arrival [Ja88]. For compressed acks, this
means that the data packets go outfaster than previously,
which can result in network stress. Second, sender-based
measurement techniques such as SBPP (x 4.1) can misinter-
pret compressed acks as reflecting greater bandwidth than
truly available. Since, however, we find ack compression
relatively rare and small in magnitude, the first problem is
not serious,7 and the second can be dealt with by judiciously
removing upper extremes from sender-based measurements.7Indeed, it has been argued that occasional ack compression is benefi-
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Figure 9: Data packet timing compression

Data packet timing compression.For data packet timing
compression, our concerns are different. Sometimes a flight
of data packets is sent at a high rate due to a sudden advance
in the receiver's offered window. Normally these flights are
spread out by the bottleneck and arrive at the receiver with
a distanceQb between each packet (x 4). If after the bottle-
neck their timing is compressed, then use of Eqn 2 willnot
detect this fact unless they are compressed to a greater degree
than their sending rate. Figure 9 illustrates this concern: the
flights of data packets arrived at the receiver at 170 Kbyte/sec
(T1 rate), except for the central flight, which arrived at Eth-
ernet speed. However, it was also sent at Ethernet speed, so
for it, � � 1.

Consequently, we consider a group of data packets as
“compressed” if they arrive at greater than twice the upper
bound on the estimated bottleneck bandwidth,�+B . We only
consider groups of at least four data packets, as these, cou-
pled with ack-every-other policies, have the potential to then
elicit a pair of acks reflecting the compressed timing, leading
to bogus self-clocking.

These compression events are rarer than ack compression,
occurring in only 3% of theN1 traces and 7% of those inN2. We were interested in whether some paths might be
plagued by repeated compression events due to either pecu-
liar router architectures or network dynamics. Only 25–30%
of the traces with an event had more than one, and just 3%
had more than five, suggesting that such phenomena are rare.
But those connections with multiple events are dominated by
a few host pairs, indicating that the phenomenon does occur
repeatedly, and is sometimes due to specific routers.

It appears that data packet timing compression is rare
enough not to present a problem. That it does occur, though,
again highlights the necessity for outlier-filtering when con-
ducting timing measurements. (It also has a measurement
benefit: from the arrival rate of the compressed packets, we
can estimate the downstream bottleneck rate.)

6.2 Queueing time scales

In this section we briefly develop a rough estimate of the
time scales over which queueing occurs. If we take care to

cial, since it provides an opportunity for self-clocking todiscover newly-
available bandwidth.
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Figure 10: Proportion (normalized) of connections with
given timescale of maximum delay variation (b� )

eliminate suspect clocks, reordered packets, compressed tim-
ing, and traces exhibiting TTL shifts (which indicate routing
changes), then we argue that the remaining measured OTT
variation reflects queueing delays.

We compute thequeueing variation on the time scale�
as follows. We partition the packets sent by a TCP into in-
tervals of length� . For each interval, letnl andnr be the
number of successfully-arriving packets in the left and right
halves of the interval. If either is zero, or ifnl < 14nr or
vice versa, then we reject the interval as containing too few
measurements or too much imbalance between the halves.
Otherwise, letml andmr be the median OTTs of the two
halves. We then define the interval's queueing variation asjml � mrj. Finally, let�Q� be the median ofjml � mrj
over all such intervals.

Thus,�Q� reflects the “average” variation we observe in
packet delays over a time scale of� . By using medians,
this estimate is robust in the presence of noise due to non-
queueing effects, or queueing spikes. By dividing intervals
in two and comparing only variation between the two halves,
we confine�Q� to only variations on the time scale of� .
Shorter or longer lived variations are in general not included.

We now analyze�Q� for different values of� , confining
ourselves to variations in ack OTTs, as these are not clouded
by self-interference and adaptive transmission rate effects.
The question is: are their particular� 's on which most queue-
ing variation occurs? If so, then we can hope to engineer for
those time scales. For example, if the dominant� is less than
a connection's RTT, then it is pointless for the connection to
try to adapt to queueing fluctuations, since it cannot acquire
feedback quickly enough to do so.

For each connection, we range through24; 25; : : : ; 216 msec to findb� , the value of� for which�Q�
is greatest.b� reflects the time scale for which the connection
experienced the greatest OTT variation. Figure 10 shows
the normalized proportion of the connections inN1 andN2
exhibiting different values ofb� . Normalization is done by
dividing the number of connections that exhibitedb� with
the number that had durations at least as long asb� . For both
datasets, time scales of 128–2048 msec primarily dominate.
This range, though, spans more than an order of magnitude,
and also exceeds typical RTT values. Furthermore, while

less prevalent,b� values all the way up to 65 sec remain
common, withN1 having a strong peak at 65 sec (which
appears genuine; perhaps due to periodic outages caused
by router synchronization [FJ94], eliminated by the end
of 1995).

We summarize the figure as indicating thatInternet delay
variations occur primarily on time scales of 0.1-1 sec, but
extend out quite frequently to much larger times.

6.3 Available bandwidth

The last aspect of delay variation we look at is an interpre-
tation of how it reflects theavailable bandwidth. In x 5.2
we developed a notion of data packeti's “load,”�i, meaning
how much delay it incurs due to queueing at the bottleneck
behind its predecessors, plus its own bottleneck transmission
time�b. Since every packet requires�b to transit the bottle-
neck,variations in OTT do not include�b, but will reflect�i � �b. Term this value i, and let
i denote the differ-
ence between packeti's measured OTT and the minimum
observed OTT.

If the network path is completely unloaded except for
the connection's load itself (no competing traffic), then we
should have i = 
i, i.e., all of i's delay variation is due to
queueing behind its predecessors. More generally, define� = Pi ( i + �i)Pj (
j + �j) :� then reflects the proportion of the packet's delay due to the
connection's own loading of the network. If� � 1, then all
of the delay variation is due to the connection's own queue-
ing load on the network, while, if� � 0, then the connec-
tion's load isinsignificantcompared to that of other traffic in
the network.

More generally,
Pi ( i + �i) reflects the resources

consumed by the connection, while
Pj (
j + �j) �Pi ( i + �i) = Pj 
j �Pi  i reflects the resources con-

sumed by the competing connections.
Thus,� captures the proportion of the total resources that

were consumed by the connection itself, and we interpret�
as reflecting theavailable bandwidth. Values of� close to
1 mean that the entire bottleneck bandwidth was available,
and values close to 0 mean that almost none of it was actually
available.

Note that we can have� � 1 even if the connection does
not consume all of the network path's capacity. All that is
required is that, to the degree that the connection did attempt
to consume network resources, they were readily available.
This observation provides the basis for hoping that we might
be able to use� to estimate available bandwidth without fully
stressing the network path.

We can gauge how well� truly reflects available band-
width by computing the coefficient of correlation between�
and the connection's overall throughput (normalized by di-
viding by the bottleneck bandwidth). ForN1, this is 0.44,
while forN2, it rises to 0.55.
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Figure 11: Density and cumulative distribution ofN2
inferred available bandwidth (�)

Figure 11 shows the density and cumulative distribution of� forN2. Not surprisingly, we find that Internet connections
encounter a broad range of available bandwidth.8 As is gen-
erally the case with Internet characteristics, a single figure
like this can oversimplify the situation. We note, for exam-
ple, that confining the evaluation of� to European connec-
tions results in a sharp leftward shift in the density, indicat-
ing generally less available bandwidth, while for U.S. con-
nections, the density shifts to the right. Furthermore, for
paths with higher bottleneck bandwidths, we generally find
lower values of�, reflecting that such paths tend to be shared
among more competing connections. Finally, we note that
the predictive power of� tends to be fairly good. On av-
erage, a given observation of� will be within 0.1 of later
observations of� for the same path, for time periods up to
several hours.

7 Conclusions

Several conclusions emerge from our study:� With due diligence to remove packet filter errors and
TCP effects, TCP-based measurement provides a viable
means for assessing end-to-end packet dynamics.� We find wide ranges of behavior, such that we must ex-
ercise great caution in regarding any aspect of packet
dynamics as “typical.”� Some common assumptions such as in-order packet
delivery, FIFO bottleneck queueing, independent loss8The depressed density at� � 0 reflects a measurement bias [Pa97b].

events, single congestion time scales, and path symme-
tries are all violated, sometimes frequently.� When implemented correctly, TCP's retransmission
strategies work in a sufficiently conservative fashion.� The combination of path asymmetries and reverse-
path noise render sender-only measurement tech-
niques markedly inferior to those that include receiver-
cooperation.

This last point argues that when the measurement of interest
concerns a unidirectional path—be it for measurement-based
adaptive transport techniques such as TCP Vegas [BOP94],
or general Internet performance metrics such as those in de-
velopment by the IPPM effort [A+96]—the extra complica-
tions incurred by coordinating sender and receiver are worth
the effort.
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